ALPHA & OMEGA	AO3418 30V N-Channel MOSFET			
General Description	Product Summary			
The AO3418 uses advanced trench techno provide excellent $R_{DS(ON)}$, low gate charge a with gate voltages as low as 2.5V. This dev for use as a load switch or in PWM application of the technology of	and operation rice is suitable	V_{DS} I_D (at V_{GS} =10V) $R_{DS(ON)}$ (at V_{GS} =10 $R_{DS(ON)}$ (at V_{GS} =4 $R_{DS(ON)}$ (at V_{GS} =2	.5V)	30V 3.8A < 55mΩ < 65mΩ < 85mΩ
Top View SOT23 Bottom	View		G G S	
Absolute Maximum Ratings T _A =25°C unles				
Parameter Drain-Source Voltage	Symbol		imum	Units V
Gate-Source Voltage	V _{DS} V _{GS}	30 ±12		V
Continuous Drain T _A =25°C Current T _A =70°C		3.8 3.1		A
Pulsed Drain Current $^{\circ}$ $T_{A}=25^{\circ}C$ Power Dissipation B $T_{A}=70^{\circ}C$	Р _D	15 1.4 0.9		W
Junction and Storage Temperature Range	T _J , T _{STG}	-55 to 150		°C
Thermal Characteristics Parameter	Symbol	Тур	Мах	Units

Parameter		Symbol	Тур	Max	Units
Maximum Junction-to-Ambient ^A	t ≤ 10s	р	70	90	°C/W
Maximum Junction-to-Ambient AD	Steady-State	κ _{θJA}	100	125	°C/W
Maximum Junction-to-Lead	Steady-State	$R_{ ext{ hetaJL}}$	63	80	°C/W

Electrical Characteristics (T₁=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V	30			V
I _{DSS} Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V			1		
	Zero Gale Voltage Drain Gurrent	T _J =55°	С		5	μA
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$	0.5	1	1.5	V
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V	15			Α
R _{DS(ON)} Static Drain-Source On-Resistance		V _{GS} =10V, I _D =3.8A		43	55	mΩ
	Static Drain-Source On-Posistance	T _J =125°	С	70	84	1115.2
	V _{GS} =4.5V, I _D =3.5A		47	65	mΩ	
	V _{GS} =2.5V, I _D =1A		59	85	mΩ	
9 _{FS}	Forward Transconductance	V _{DS} =5V, I _D =3.8A		14		S
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.75	1	V
I _S	Maximum Body-Diode Continuous Current				1.5	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance		185	235	285	pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz	25	35	45	pF
C _{rss}	Reverse Transfer Capacitance		10	18	25	pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	2.1	4.3	6.5	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			10	12	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =3.8A		4.7		nC
Q_{gs}	Gate Source Charge	$V_{GS} = 100, V_{DS} = 100, 10 = 3.0$		0.95		nC
Q_{gd}	Gate Drain Charge			1.6		nC
t _{D(on)}	Turn-On DelayTime			3.5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R _L =3.95 Ω ,		1.5		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		17.5		ns
t _f	Turn-Off Fall Time			2.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =3.8A, dl/dt=100A/μs		8.5	11	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =3.8A, dI/dt=100A/μs		2.6	3.5	nC

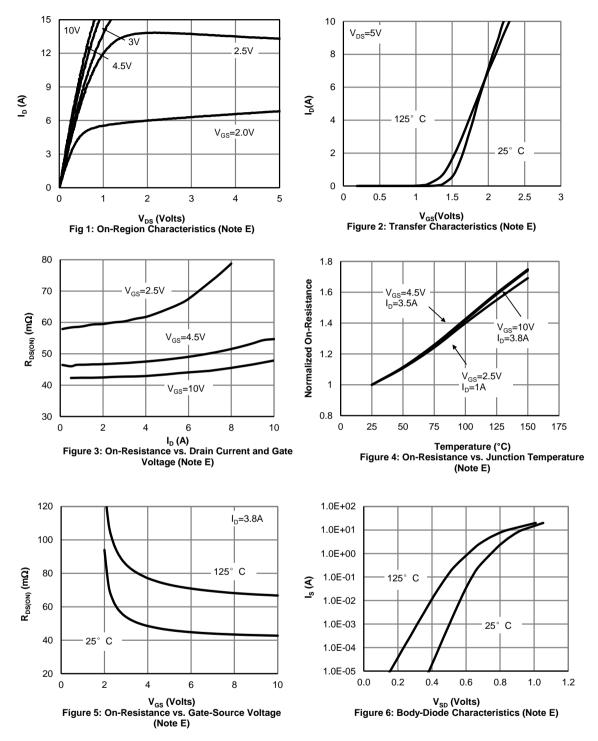
A. The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The

value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}=150^{\circ}$ C, using $\leq 10s$ junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150° C. Ratings are based on low frequency and duty cycles to keep initial T_J=25 $^{\circ}$ C.

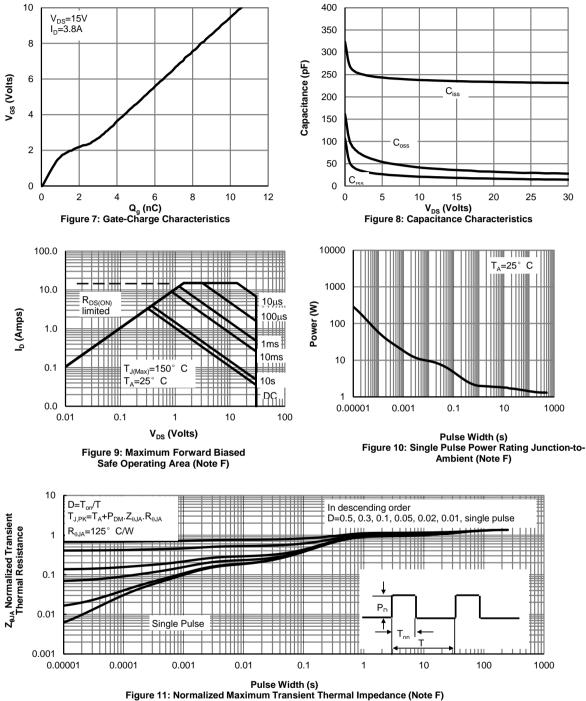
D. The $R_{_{\theta JA}}$ is the sum of the thermal impedence from junction to lead $R_{_{\theta JL}}$ and lead to ambient.

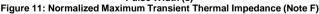
F. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.
 F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with

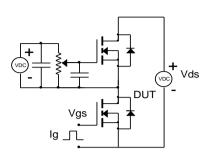

2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

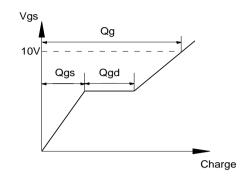
APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

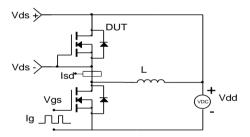


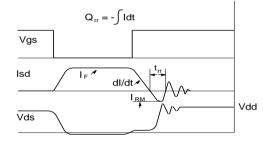

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS


TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



Gate Charge Test Circuit & Waveform





Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

