AON6946 ## 30V Dual Asymmetric N-Channel AlphaMOS ## **General Description** - Latest Trench Power AlphaMOS (αMOS LV) technology - Very Low R_{DS(on)} at 4.5V V_{GS} - Low Gate Charge - High Current Capability - RoHS and Halogen-Free Compliant ## **Application** - DC/DC Converters in Computing, Servers, and POL - Isolated DC/DC Converters in Telecom and Industrial ## **Product Summary** $\begin{array}{cccc} & & \underline{Q1} & \underline{Q2} \\ V_{DS} & & 30V & 30V \\ I_D \ (at \ V_{GS} = 10V) & 16A & 18A \\ R_{DS(ON)} \ (at \ V_{GS} = 10V) & <11.6 m\Omega & <7.8 m\Omega \\ R_{DS(ON)} \ (at \ V_{GS} = 4.5V) & <17 m\Omega & <11.8 m\Omega \end{array}$ 100% UIS Tested 100% Rg Tested **Bottom View** Absolute Maximum Ratings T_A=25°C unless otherwise noted | Parameter | | Symbol | Max Q1 | Max Q2 | Units | | |--|-----------------------|-----------------------------------|--------|-----------------|-------|--| | Drain-Source Voltage | | V _{DS} | 30 | | V | | | Gate-Source Voltage | | V_{GS} | | ±20 | V | | | Continuous Drain | T _C =25°C | | 16 | 18 | | | | Current ^G | T _C =100°C | 'D | 12 | 14 | Α | | | Pulsed Drain Current | C | I _{DM} | 64 | 72 | | | | Continuous Drain | T _A =25°C | | 14 | 18 ^G | Δ. | | | Current | T _A =70°C | IDSM | 11.5 | 14 | Α | | | Avalanche Current ^C | | I _{AS} | 19 | 25 | А | | | Avalanche Energy L=0.05mH ^C | | E _{AS} | 9 | 16 | mJ | | | V _{DS} Spike | 100ns | V _{SPIKE} | 36 | 36 | V | | | | T _C =25°C | | 7.3 | 13 | 14/ | | | Power Dissipation B | T _C =100°C | $-P_{D}$ | 2.9 | 5.2 | W | | | | T _A =25°C | В | 3.5 | 3.9 | 10/ | | | Power Dissipation A | T _A =70°C | P _{DSM} | 2.3 | 2.5 | W | | | Junction and Storage Temperature Range | | T _J , T _{STG} | -55 t | °C | | | | Thermal Characteristics | | | | | | | | |--------------------------------|--------------|-----------------|--------|--------|--------|-------|------| | Parameter | Symbol | Typ Q1 | Typ Q2 | Max Q1 | Max Q2 | Units | | | Maximum Junction-to-Ambient A | t ≤ 10s | | 29 | 26 | 35 | 32 | °C/W | | Maximum Junction-to-Ambient AD | Steady-State | $R_{\theta JA}$ | 55 | 50 | 66 | 60 | °C/W | | Maximum Junction-to-Case | Steady-State | $R_{\theta JC}$ | 13.8 | 7.7 | 17 | 9.5 | °C/W | #### Q1 Electrical Characteristics (T_{.1}=25°C unless otherwise noted) | Symbol | Parameter | Conditions | Min | Тур | Max | Units | | | |-----------------------------|---------------------------------------|---|----------------------|-----|------|-------|--------|--| | STATIC PARAMETERS | | | | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$ | | 30 | | | V | | | I _{DSS} | Zero Gate Voltage Drain Current | V_{DS} =30V, V_{GS} =0V | | | | 1 | μА | | | | | | T _J =55°C | | | 5 | μΛ | | | I_{GSS} | Gate-Body leakage current | $V_{DS}=0V$, $V_{GS}=\pm20V$ | | | | ±100 | nA | | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS}=V_{GS} I_{D}=250\mu A$ | | 1.2 | 1.8 | 2.2 | V | | | | Static Drain-Source On-Resistance | V_{GS} =10V, I_D =13A | | | 9.6 | 11.6 | mΩ | | | $R_{DS(ON)}$ | | Т | _J =125°C | | 13.4 | 16.2 | 1112.2 | | | | | V_{GS} =4.5V, I_D =10A | | | 13.6 | 17 | mΩ | | | g _{FS} | Forward Transconductance | V_{DS} =5V, I_{D} =13A | | | 50 | | S | | | V_{SD} | Diode Forward Voltage | I _S =1A,V _{GS} =0V | | | 0.7 | 1 | V | | | Is | Maximum Body-Diode Continuous Current | | | | | 9 | Α | | | DYNAMIC | CPARAMETERS | | | | | | | | | C _{iss} | Input Capacitance | | | | 485 | | pF | | | Coss | Output Capacitance | V_{GS} =0V, V_{DS} =15V, f=1M | | 235 | | pF | | | | C _{rss} | Reverse Transfer Capacitance | | | 32 | | pF | | | | R_g | Gate resistance | f=1MHz | 0.9 | 1.8 | 2.7 | Ω | | | | SWITCHI | NG PARAMETERS | | | | | | | | | Q _g (10V) | Total Gate Charge | V _{GS} =10V, V _{DS} =15V, I _D =13A | | | 8 | 15 | nC | | | Q _g (4.5V) | Total Gate Charge | | | | 3.9 | 8 | nC | | | Q_{gs} | Gate Source Charge | | | | 1.1 | | nC | | | Q_{gd} | Gate Drain Charge | | | | 2.1 | | nC | | | t _{D(on)} | Turn-On DelayTime | V_{GS} =10V, V_{DS} =15V, R_L =1.2 Ω , R_{GEN} =3 Ω | | | 3.5 | | ns | | | t _r | Turn-On Rise Time | | | | 2.8 | | ns | | | $t_{D(off)}$ | Turn-Off DelayTime | | | | 16.3 | | ns | | | t _f | Turn-Off Fall Time | | | 3 | | ns | | | | t _{rr} | Body Diode Reverse Recovery Time | I _F =13A, dI/dt=500A/μs | | | 9.9 | | ns | | | Q_{rr} | Body Diode Reverse Recovery Charge | I _F =13A, dI/dt=500A/μs | | | 12.9 | | nC | | A. The value of $R_{0,IA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on $R_{0,IA}$ \leq 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS. AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale B. The power dissipation P_D is based on $T_{J_{(MAX)}}$ =150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep initial T_J =25° C. D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating. G. The maximum current rating is limited by package. H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with TA=25° C. #### Q1-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS V_{GS}(Volts) Figure 2: Transfer Characteristics (Note E) Gate Voltage (Note E) Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature (Note E) V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E) #### Q1-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS #### Q1-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Pulse Width (s) Figure 15: Normalized Maximum Transient Thermal Impedance (Note H) #### Q2 Electrical Characteristics (T_{.1}=25°C unless otherwise noted) | Symbol | Parameter | Conditions | | Min | Тур | Max | Units | | |-----------------------------|---------------------------------------|---|-----------------------|------|------|------|-----------|--| | STATIC PARAMETERS | | | | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$ | | 30 | | | V | | | I _{DSS} | Zero Gate Voltage Drain Current | V_{DS} =30V, V_{GS} =0V | | | | 1 | μА | | | | | | T _J =55°C | | | 5 | μπ | | | I_{GSS} | Gate-Body leakage current | V_{DS} =0V, V_{GS} =±20V | | | | ±100 | nA | | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS}=V_{GS} I_{D}=250\mu A$ | | 1.2 | 1.8 | 2.2 | V | | | | Static Drain-Source On-Resistance | V_{GS} =10V, I_D =15A | | | 6.5 | 7.8 | mΩ | | | $R_{DS(ON)}$ | | | T _J =125°C | | 8.8 | 10.6 | 11122 | | | | | V_{GS} =4.5V, I_D =10A | | | 9.4 | 11.8 | $m\Omega$ | | | g _{FS} | Forward Transconductance | V_{DS} =5V, I_{D} =15A | | 100 | | S | | | | V_{SD} | Diode Forward Voltage | I _S =1A,V _{GS} =0V | | 0.7 | 1 | V | | | | Is | Maximum Body-Diode Continuous Current | | | | | 15 | Α | | | DYNAMI | CPARAMETERS | | | | | | | | | C _{iss} | Input Capacitance | | | | 807 | | pF | | | Coss | Output Capacitance | V_{GS} =0V, V_{DS} =15V, f= | | 314 | | pF | | | | C_{rss} | Reverse Transfer Capacitance | | | 40 | | pF | | | | R_g | Gate resistance | f=1MHz | 0.6 | 1.3 | 2 | Ω | | | | SWITCH | NG PARAMETERS | | - | | | | | | | Q _g (10V) | Total Gate Charge | | | | 12.9 | 20 | nC | | | Q _g (4.5V) | Total Gate Charge | V _{GS} =10V, V _{DS} =15V, I _I | | 6 | 12 | nC | | | | Q_{gs} | Gate Source Charge | V _{GS} =10V, V _{DS} =15V, I | | 2.1 | | nC | | | | Q_{gd} | Gate Drain Charge | 1 | | | 3 | | nC | | | t _{D(on)} | Turn-On DelayTime | V_{GS} =10V, V_{DS} =15V, R_L =1 Ω , R_{GEN} =3 Ω | | | 4.8 | | ns | | | t _r | Turn-On Rise Time | | | | 3.3 | | ns | | | t _{D(off)} | Turn-Off DelayTime | | | | 18.8 | | ns | | | t _f | Turn-Off Fall Time | | | 3.3 | | ns | | | | t _{rr} | Body Diode Reverse Recovery Time | I _F =15A, dI/dt=500A/μ | | 11.3 | | ns | | | | Q_{rr} | Body Diode Reverse Recovery Charge | I _F =15A, dI/dt=500A/μ | s | | 15 | | nC | | A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R_{0JA} t $\leq 10s$ and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS. AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150° C. Ratings are based on low frequency and duty cycles to keep initial T_J =25° C. D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating. G. The maximum current rating is limited by package. H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with TA=25° C. #### **Q2-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS** #### **Q2-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS** Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) 150 #### **Q2-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS** Pulse Width (s) Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H) ## Gate Charge Test Circuit & Waveform ## Resistive Switching Test Circuit & Waveforms ## Unclamped Inductive Switching (UIS) Test Circuit & Waveforms ## Diode Recovery Test Circuit & Waveforms