

AOK065V120X2 1200 V α SiC Silicon Carbide Power MOSFET

1200 V

 $65 m\Omega$

155 nC

30 µ J

85A

Product Summary

V_{DS} @ T_{J, max}

Eoss @ 800 V

100% UIS Tested

RDS(ON), typ

 I_{DM}

Qrr

Features

- Proprietary αSiC MOSFET technology
- · Low loss, fast switching speeds with low R_G
- Optimized drive voltage (V_{GS}=15V) for broad driver compatibility
- Robust body diode and low Qrr

Applications

Renewable

- EV Charger Solar Inverters
- Industrial
 UPS
- SMPS
 - Motor Drives

Pin Configuration

Ordering Part Number Package Type		Form	Shipping Quantity		
AOK065V120X2	TO-247-3L	Tube	30/Tube		

Absolute Maximum Ratings

 $(T_A = 25^{\circ}C, unless otherwise noted)$

Symbol		AOK065V120X2	Units	
V _{DS}	Drain-Source Voltage		1200	V
V _{GS, MAX}		Maximum	-8/+18	V
V _{GS,OP,TRANS}	Gate-Source Voltage	Max Transient ^(A)	-8/+20	
V _{GS,OP}		Recommended Operating ^(B)	-5/+15	
1	I _D Continuous Drain Current	T _C =25°C	40.3	
'D		T _C =100°C	29.6	A
I _{DM}	Pulsed Drain Current ^(C)		85	
E _{AS}	Single Pulsed Avalanche Energy ^(D)		250	mJ
P _D	Power Dissipation ^(C)		187.5	W
T _J , T _{STG}	Junction and Storage Temperature Range		-55 to 175	°C
T	Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	AOK065V120X2	Units	
R _{0JA}	Maximum Junction-to-Ambient (E,F)	40	°C/W	
R _{θJC}	Maximum Junction-to-Case (G)	0.8	°C/W	

Electrical Characteristics

 $(T_A = 25^{\circ}C, unless otherwise noted)$

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC		1		-			
V	Drain-Source Breakdown Voltage $I_D = 250 \mu A, V_{GS} = 0 V, T_J = 25^{\circ}$, T _J =25°C	1200			V
V _{(BR)DSS}		I _D =250 µA, V _{GS} =0 V, T _J =150°C		1200			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =1200 V, V _{GS} =0	V			50	μA
I _{GSS}	Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =+15/-5V				±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}, I_{D}=10 \text{ mA}$		1.8	2.8	3.5	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =15V, I _D =10A	T _J = 25°C T _J = 150°C		65 90	85	mΩ mΩ
9 _{fs}	Forward Transconductance	V _{DS} =20V, I _D =20V			12		S
V _{SD}	Diode Forward Voltage	$I_{S} = 10A, V_{GS} = -5V$			4.1	5	V
DYNAMIC		0 0,00		1	1	<u> </u>	1
C _{iss}	Input Capacitance			1716		pF	
C	Output Capacitance	V _{GS} =0V, V _{DS} =800V, f=1MHz f=1MHz			71		pF
C	Reverse Transfer Capacitance				5		pF
E _{oss}	Coss Stored Energy				30		μJ
R _G	Gate Resistance				1.7		Ω
SWITCHING							
Q _g	Total Gate Charge	V _{GS} =-5/+15V, V _{DS} =800V, I _D =20A			62.3		nC
Q _{gs}	Gate Source Charge				23.1		nC
Q _{gd}	Gate Drain Charge				23.7		nC
t _{d(on)}	Turn-On Delay Time	V _{GS} =0V/+15V, V _{DS} =800V, I _D =20A, R _G =5Ω			14.6		ns
t _r	Turn-On Rise Time				36.2		ns
t _{d(off)}	Turn-Off Delay Time				20.8		ns
t _f	Turn-Off Fall Time				10.2		ns
E _{on}	Turn-On Energy	L=120µH			325		μJ
E _{off}	Turn-Off Energy	FWD: AOK065V120X2			23		μJ
E _{tot}	Total Switching Energy				348		μJ
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A,dl/dt=1560A/us, V _{DS} =800V			27		ns
l _{rm}	Peak Reverse Recovery Current				10		Α
Q _{rr}	Body Diode Reverse Recovery Charge				155		nC

- Notes: A. <1% duty cycle, f>1Hz B. Device can be operated at V_{GS}=0/15V. Actual operating VGS will depend on application specifics such as parasitic inductance and dV/dt
- but should not exceed maximum ratings. C. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- D. L=5mH, I_{AS} =10A, R_G =25 Ω , Starting T_J =25°Č
- E. The value of $R_{\theta JA}$ is measured with the device in a still air environment

with $T_A = 25^{\circ}C$.

F. The $R_{\text{e,iA}}$ is the sum of the thermal impedance from junction to case $R_{\text{e,iC}}$ and case to ambient.

G. The value of R_{BJC} is measured with the device mounted to a large heat-sink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175°C. H. The static characteristics in Figures 1 to 8 are obtained using < 300 ms

pulses, duty cycle 0.5% max. I. These curves are based on $R_{\rm BJC}$ which is measured with the device

mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ = 175°C. The SOA curve provides a single pulse rating.

Typical Electrical and Thermal Characteristics

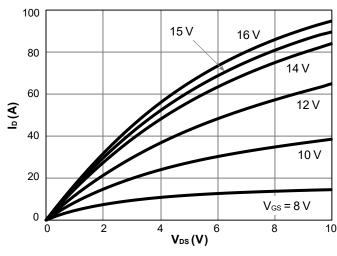


Figure 1. On-Region Characteristics T_J = 25°C

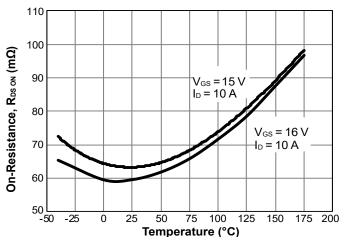
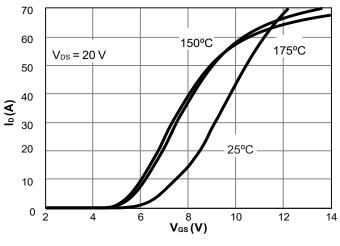
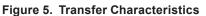
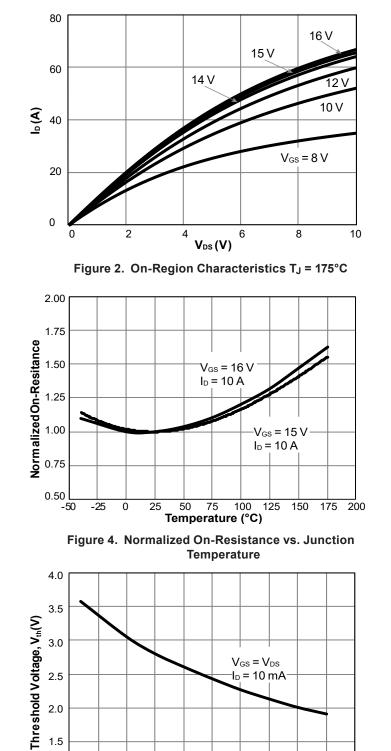





Figure 3. On-Resistance vs. Junction Temperature

1.0₋₅₀ -25 0 25 50 75 100 125 150 175 200 Temperature (°C)

Typical Electrical and Thermal Characteristics (Continued)

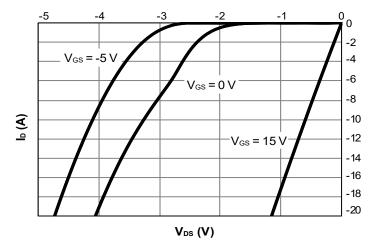
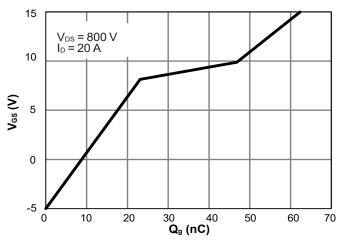
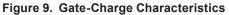
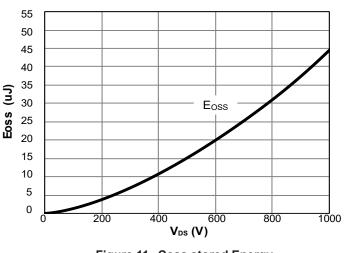
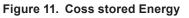






Figure 7. Body-Diode Characteristics at 25°C

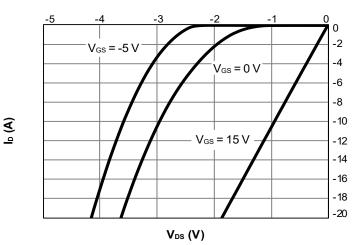
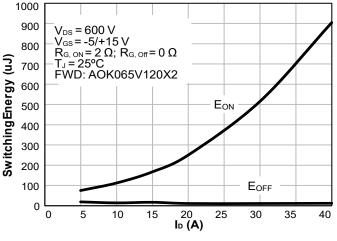
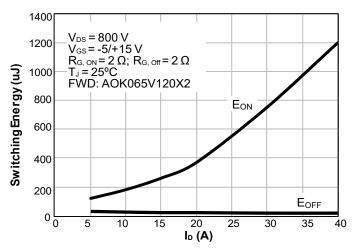
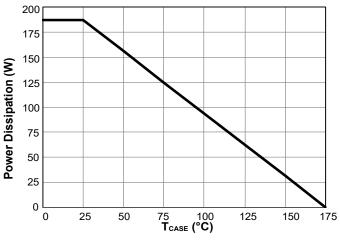


Figure 8. Body-Diode Characteristics at 175°C


Figure 10. Capacitance Characteristics



Typical Electrical and Thermal Characteristics (Continued)

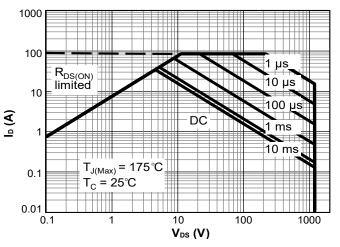


Figure 17. Maximum Forward Biased Safe Operating Area for AOK065V120X2 (Note I)

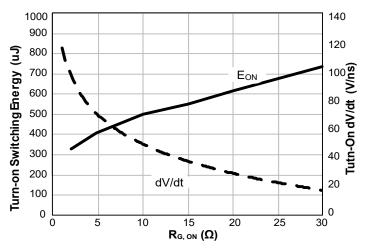


Figure 14. Turn-On Energy and dV/dt vs. External Gate Resistance

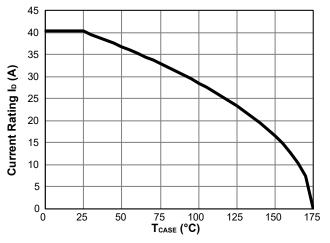


Figure 16. Current De-rating (Note I)

Typical Electrical and Thermal Characteristics (Continued)

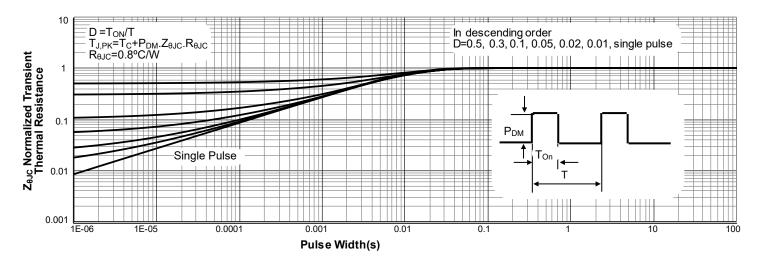


Figure 18. Normalized Maximum Transient Thermal Impedance for AOK065V120X2 (Note I)

Test Circuits and Waveforms



Figure 19. Gate Charge Test Circuits and Waveforms

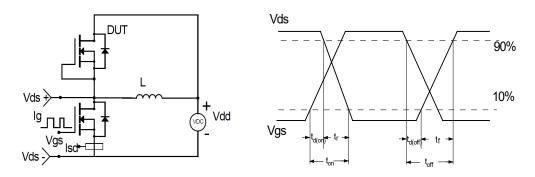


Figure 20. Inductive Switching Test Circuit and Waveforms

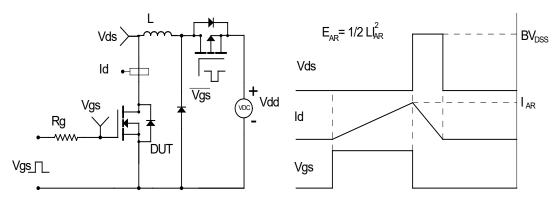


Figure 21. Unclamped Inductive Switching (UIS) Test Circuit and Waveforms

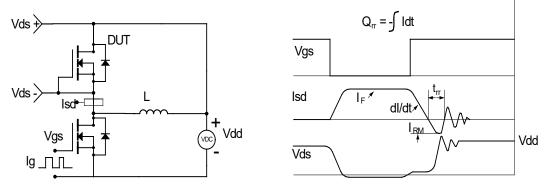
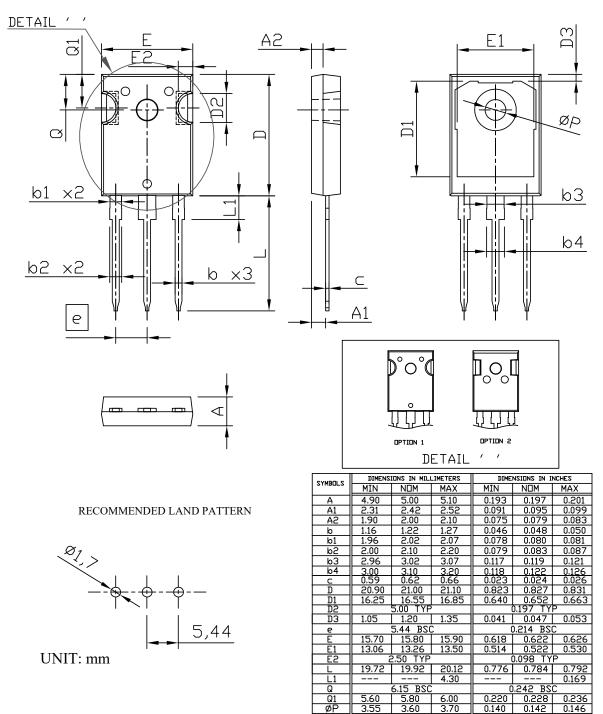



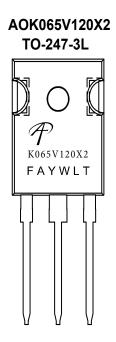
Figure 22. Diode Recovery Test Circuits and Waveforms

www.aosmd.com

Package Dimensions, TO-247-3L

NOTE

1. PAKCAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.


MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.

2. CONTROLLING DIMENSION IS MILLIMETER.

CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

Part Marking

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. Alpha and Omega Semiconductor does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS's products are provided subject to AOS's terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, which, (a) are intended for surgical implant into the body or device, or system whose failure to perform can be reasonably (b) support or sustain life, and (c) whose failure to perform expected to cause the failure of the life support device or when properly used in accordance with instructions for use system, or to affect its safety or effectiveness. provided in the labeling, can be reasonably expected to result in a significant injury of the user.