General Description
The AON7422E combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{DS(ON)}$. This device is ideal for load switch and battery protection applications.

Product Summary
- V_{DS}: 30V
- I_D (at V_{DS}=10V): 40A
- $R_{DS(ON)}$ (at V_{DS}=10V): < 4.3mΩ
- $R_{DS(ON)}$ (at V_{GS}=4.5V): < 6.0mΩ

ESD protected
100% UIS Tested
100% R_V Tested

Absolute Maximum Ratings T_A=25°C unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_D</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>T_C=25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_C=100°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsed Drain Current I_{SM}</td>
<td>I_{SM}</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_{DQ}</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>T_A=25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_A=70°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avalanche Current I_{ABS}, I_{AR}</td>
<td></td>
<td>45</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy L=0.1mH E_{ABS}, E_{AR}</td>
<td>101</td>
<td>mJ</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation P_D</td>
<td>P_D</td>
<td>36</td>
<td>W</td>
</tr>
<tr>
<td>T_C=25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_C=100°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation P_{DQ}</td>
<td>P_{DQ}</td>
<td>14</td>
<td>W</td>
</tr>
<tr>
<td>T_A=25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_A=70°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_J, T_{STG}</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient R_{JA}</td>
<td></td>
<td>l ≤ 10s</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient R_{JC}</td>
<td></td>
<td>Steady-State</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>Maximum Junction-to-Case R_{JC}</td>
<td></td>
<td>Steady-State</td>
<td>2.8</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Rev 2.0: June 2014
www.aosmd.com
Electrical Characteristics (T_j=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV<sub>DS</sub></td>
<td>Drain-Source Breakdown Voltage</td>
<td>I<sub>d</sub>=250µA, V<sub>GS</sub>=0V</td>
<td>30</td>
<td>36</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I<sub>DS</sub></td>
<td>Zero Gate Voltage Drain Current</td>
<td>V<sub>DS</sub>=30V, V<sub>GS</sub>=0V</td>
<td>1</td>
<td>5</td>
<td>μA</td>
<td>T<sub>j</sub>=55°C</td>
</tr>
<tr>
<td>I<sub>G</sub></td>
<td>Gate-Body leakage current</td>
<td>V<sub>DS</sub>=0V, V<sub>GS</sub>=±16V</td>
<td>5</td>
<td></td>
<td>uA</td>
<td></td>
</tr>
<tr>
<td>R<sub>DS</sub></td>
<td>Gate-Body leakage current</td>
<td>V<sub>DS</sub>=0V, V<sub>GS</sub>=±20V</td>
<td>10</td>
<td></td>
<td>uA</td>
<td></td>
</tr>
<tr>
<td>V<sub>DS(th)</sub></td>
<td>Gate Threshold Voltage</td>
<td>V<sub>DS</sub>=V<sub>GS</sub>, I<sub>d</sub>=250µA</td>
<td>1.3</td>
<td>1.85</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>I<sub>DS(on)</sub></td>
<td>On state drain current</td>
<td>V<sub>DS</sub>=10V, V<sub>GS</sub>=5V</td>
<td>200</td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>R<sub>DS(on)</sub></td>
<td>Static Drain-Source On-Resistance</td>
<td>V<sub>DS</sub>=10V, I<sub>d</sub>=20A</td>
<td>3.5</td>
<td>4.3</td>
<td>mΩ</td>
<td>T<sub>j</sub>=125°C</td>
</tr>
<tr>
<td>g<sub>B</sub></td>
<td>Forward Transconductance</td>
<td>V<sub>GS</sub>=5V, I<sub>d</sub>=20A</td>
<td>85</td>
<td></td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>V<sub>SD</sub></td>
<td>Diode Forward Voltage</td>
<td>I<sub>d</sub>=1A, V<sub>GS</sub>=0V</td>
<td>0.7</td>
<td>1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>C<sub>iss</sub></td>
<td>Maximum Body-Diode Continuous Current<sup>+</sup></td>
<td></td>
<td>40</td>
<td></td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

STATIC PARAMETERS

- **Gate-Body leakage current**
 - Conditions: V_{DS}=0V, V_{GS}=±20V
 - I_G: 5 µA

- **Gate-Body leakage current**
 - Conditions: V_{DS}=0V, V_{GS}=±16V
 - I_G: 5 uA

- **Gate-Body leakage current**
 - Conditions: V_{DS}=0V, V_{GS}=±20V
 - I_G: 10 uA

- **Gate Threshold Voltage**
 - Conditions: V_{DS}=V_{GS}, I_d=250µA
 - V_{DS(th)}: 1.3 V, 1.85 V, 2.4 V

- **On state drain current**
 - Conditions: V_{DS}=5V, I_d=20A
 - I_{DS(on)}: 200 A

- **Static Drain-Source On-Resistance**
 - Conditions: V_{DS}=10V, I_d=20A
 - R_{DS(on)}: 3.5 mΩ, 4.3 mΩ

DYNAMIC PARAMETERS

- **Input Capacitance**
 - Conditions: V_{GS}=0V, V_{DS}=15V, f=1MHz
 - C_{iss}: 1950 pF, 2445 pF, 2940 pF

- **Output Capacitance**
 - Conditions: V_{GS}=0V, V_{DS}=15V, f=1MHz
 - C_{oss}: 270 pF, 390 pF, 510 pF

- **Reverse Transfer Capacitance**
 - Conditions: V_{GS}=0V, V_{DS}=15V, f=1MHz
 - C_{rss}: 130 pF, 220 pF, 310 pF

- **Gate resistance**
 - Conditions: V_{GS}=0V, V_{DS}=0V, f=1MHz
 - R_g: 1.2 Ω, 2.4 Ω, 3.6 Ω

SWITCHING PARAMETERS

- **Total Gate Charge**
 - Conditions: V_{GS}=10V, V_{DS}=15V, I_d=20A
 - Q_g: 32 nC, 41 nC, 50 nC

- **Gate Source Charge**
 - Conditions: V_{GS}=10V, V_{DS}=15V, I_d=20A
 - Q_{gs}: 7.2 nC

- **Gate Drain Charge**
 - Conditions: V_{GS}=10V, V_{DS}=15V, I_d=20A
 - Q_{gd}: 6.6 nC

- **Turn-On Delay Time**
 - Conditions: V_{GS}=10V, V_{DS}=15V, R_L=0.75 Ω
 - t_{D(on)}: 7 ns

- **Turn-On Rise Time**
 - Conditions: V_{GS}=10V, V_{DS}=15V, R_L=0.75 Ω, R_{GEN}=3 Ω
 - t_r: 5 ns

- **Turn-Off Fall Time**
 - Conditions: V_{GS}=10V, V_{DS}=15V, R_L=0.75 Ω, R_{GEN}=3 Ω
 - t_f: 41.5 ns

- **Turn-Off Delay Time**
 - Conditions: V_{GS}=10V, V_{DS}=15V, R_L=0.75 Ω, R_{GEN}=3 Ω
 - t_{rr}: 10.5 ns

- **Body Diode Reverse Recovery Time**
 - Conditions: I_d=20A, dI/dt=500A/µs
 - t_{rr}: 17.5 ns, 22 ns

- **Body Diode Reverse Recovery Charge**
 - Conditions: I_d=20A, dI/dt=500A/µs
 - Q_{rr}: 31 nC, 40 nC

Notes:

- A. The value of R_{θJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The Power dissipation P_{DSM} is based on R_{θJA} t ≤ 10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.

- B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

- C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J=25°C.

- D. The R_{θJA} is the sum of the thermal impedence from junction to case R_{θJC} and case to ambient.

- E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.

- G. The maximum current rating is package limited.

- H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Single Pulse Avalanche capability (Note C)

Figure 13: Power De-rating (Note F)

Figure 14: Current De-rating (Note F)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)