This AOS product reliability report summarizes the qualification result for AO3416. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO3416 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

I. Product Description
II. Package and Die information
III. Environmental Stress Test Summary and Result
IV. Reliability Evaluation

I. Product Description:

The AO3416 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications. It is ESD protected.

- RoHS Compliant
- Halogen Free

Detailed information refers to datasheet.

II. Die / Package Information:

<table>
<thead>
<tr>
<th>Process</th>
<th>Standard sub-micron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Type</td>
<td>Low voltage N channel</td>
</tr>
<tr>
<td>Lead Frame</td>
<td>Cu</td>
</tr>
<tr>
<td>Die Attach</td>
<td>Ag Epoxy</td>
</tr>
<tr>
<td>Bonding Wire</td>
<td>Cu & Au wire</td>
</tr>
<tr>
<td>Mold Material</td>
<td>Epoxy resin with silica filler</td>
</tr>
<tr>
<td>MSL (moisture sensitive level)</td>
<td>Level 1 based on J-STD-020</td>
</tr>
</tbody>
</table>

Note * based on information provided by assembler and mold compound supplier
III. Result of Reliability Stress for AO3416

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Test Condition</th>
<th>Time Point</th>
<th>Lot Attribution</th>
<th>Total Sample size</th>
<th>Number of Failures</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSL Precondition</td>
<td>168hr 85°C, /85% RH +3 cycle reflow@260°C</td>
<td>-</td>
<td>39 lots</td>
<td>5775 pcs</td>
<td>0</td>
<td>JESD22-A113</td>
</tr>
<tr>
<td>HTGB</td>
<td>Temp = 150°C, Vgs=100% of Vgsmax</td>
<td>168hrs</td>
<td>2 lots</td>
<td>385pcs</td>
<td>0</td>
<td>JESD22-A108</td>
</tr>
<tr>
<td>HTRB</td>
<td>Temp = 150°C, Vds=80% of Vdsmax</td>
<td>168hrs</td>
<td>2 lots</td>
<td>385pcs</td>
<td>0</td>
<td>JESD22-A108</td>
</tr>
<tr>
<td>HAST</td>
<td>130°C, 85% RH, 33.3 psi, Vgs = 100% of Vgs max</td>
<td>100 hrs</td>
<td>38 lots</td>
<td>2090 pcs</td>
<td>0</td>
<td>JESD22-A110</td>
</tr>
<tr>
<td>Pressure Pot</td>
<td>121°C, 29.7 psi, RH=100%</td>
<td>96 hrs</td>
<td>28 lots</td>
<td>1540 pcs</td>
<td>0</td>
<td>JESD22-A102</td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>-65°C to 150°C, air to air</td>
<td>250 / 500 cycles</td>
<td>39 lots</td>
<td>2145 pcs</td>
<td>0</td>
<td>JESD22-A104</td>
</tr>
</tbody>
</table>

Note A: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 6
MTTF = 19828 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AO3416). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

\[
\text{Failure Rate} = \frac{\text{Chi}^2 \times 10^9}{[2 \times (\text{N}) \times (\text{H}) \times (\text{Af})]}
\]

\[
= 1.83 \times 10^9 / [2 \times (4 \times 775 \times 500 + 6 \times 77 \times 1000) \times 258] = 6
\]

\[
\text{MTTF} = 10^9 / \text{FIT} = 1.74 \times 10^8 \text{hrs} = 19828 \text{ years}
\]

\[\text{Chi}^2 = \text{Chi Squared Distribution, determined by the number of failures and confidence interval}
\]

\[\text{N} = \text{Total Number of units from HTRB and HTGB tests}
\]

\[\text{H} = \text{Duration of HTRB/HTGB testing}
\]

\[\text{Af} = \text{Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)}
\]

\[\text{Acceleration Factor} \ [\text{Af}] = \text{Exp} [\text{Ea} / (\text{K} \times (1/T_j \text{u} - 1/T_j \text{s}))]
\]

\[\text{Acceleration Factor ratio list:}
\]

<table>
<thead>
<tr>
<th>Af</th>
<th>55 deg C</th>
<th>70 deg C</th>
<th>85 deg C</th>
<th>100 deg C</th>
<th>115 deg C</th>
<th>130 deg C</th>
<th>150 deg C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>258</td>
<td>87</td>
<td>32</td>
<td>13</td>
<td>5.64</td>
<td>2.59</td>
<td>1</td>
</tr>
</tbody>
</table>

\[T_j \text{ s} = \text{Stressed junction temperature in degree (Kelvin), } K = \text{C}+273.16
\]

\[T_j \text{ u} = \text{The use junction temperature in degree (Kelvin), } K = \text{C}+273.16
\]

\[K = \text{Boltzmann’s constant, } 8.617164 \times 10^{-5} \text{eV} / \text{K}
\]