

AOS Semiconductor Product Reliability Report

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

www.aosmd.com

This AOS product reliability report summarizes the qualification result for AO5804E. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO5804E passes AOS guality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

Table of Contents:

- I. **Product Description**
- Package and Die information Π.
- Reliability Stress Test Summary and Results Ш.
- **Reliability Evaluation** IV.

I. Product Description:

The AO5804E/L uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications.

-RoHS Compliant

Details refer to the datasheet.

II. Die / Package Information:

	AO5804E
Process	Standard sub-micron
	20V Dual N-Channel MOSFET
Package Type	SC89-6L
Lead Frame	Bare Cu
Die Attach	Eutectic
Bond	Au wire
Mold Material	Epoxy resin with silica filler
Moisture Level	Level 1

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	Temp = 150°C , Vgs=100% of Vgsmax	168 / 500 / 1000 hours	693 pcs	0	JESD22-A108
HTRB	Temp = 150°C, Vds=80% of Vdsmax	168 / 500 / 1000 hours	693 pcs	0	JESD22-A108
MSL Precondition	168hr 85°C / 85%RH + 3 cycle reflow@260°C (MSL 1)	-	3003 pcs	0	JESD22-A113
HAST	130°C ,85%RH, 33.3 psia, Vds = 80% of Vdsmax	96 hours	924 pcs	0	JESD22-A110
Autoclave	121°C , 29.7psia, RH=100%	96 hours	924 pcs	0	JESD22-A102
Temperature Cycle	-65°C to 150°C, air to air,	250 / 500 cycles	924 pcs	0	JESD22-A104
HTSL	Temp = 150°C	1000 hrs	231 pcs	0	JESD22-A103

III. Reliability Stress Test Summary and Results

Note: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 4.57 MTTF = 24953 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $Chi^2 \times 10^9 / [2 (N) (H) (Af)] = 4.57$ MTTF = $10^9 / FIT = 24953$ years

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval \mathbf{N} = Total Number of units from burn-in tests

 \mathbf{H} = Duration of burn-in testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = $55^{\circ}C$) Acceleration Factor [**Af**] = **Exp** [Ea / k (1/Tj u – 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	259	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K