

AOS Semiconductor Product Reliability Report

AOD606/AOD606L, rev B

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

495 Mercury Drive Sunnyvale, CA 94085 U.S.

Tel: (408) 830-9742

www.aosmd.com

1Jun, 2007

This AOS product reliability report summarizes the qualification result for AOD606. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AOD606 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation
- V. Quality Assurance Information

I. Product Description:

The AOD606 uses advanced trench technology MOSFETs to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs may be used in H-bridge, Inverters and other applications. Standard product AOD606 is Pb free (meets ROHS & Sony 259 specifications).

Absolute Maximum Ratings T _A =25°C unless otherwise noted						
Parameter		Symbol	Max n channel	Max p channel	Units	
Drain-Source Voltage	9	V _{DS}	40	-40	V	
Gate-Source Voltage	9	V _{GS}	±20	±20	V	
Continuous Drain	T _A =25°C		8	-8	А	
Current	T _A =100°C	I _D	8	-8		
Pulsed Drain Current		I _{DM}	30	-30		
Avalanche Current		I _{AR}	8	-8	А	
Repetitive avalanche energy 0.1mH		Ear	20	30	mJ	
	T _A =25°C	P _D	20	50	W	
Power Dissipation	T _A =100°C		10	25	vv	
	T _A =25°C	D	2	2.5	W	
Power Dissipation	T _A =70°C	P _{DSM}	1.3	1.6		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	-55 to 175	°C	

Thermal Characteristics							
Parameter	Symbol	Device	Тур	Мах	Units		
Maximum Junction-to- Ambient	T ≤ 10s	- R _{eja}	n-ch	17.4	30	°C/W	
Maximum Junction-to- Ambient	Steady- State	ΝθΙΑ	n-ch	50	60	°C/W	
Maximum Junction-to-Lead	Steady- State	$R_{ ext{ heta}JL}$	n-ch	4	7.5	°C/W	
Maximum Junction-to- Ambient	T ≤ 10s	$R_{ heta JA}$	p-ch	16.7	25	°C/W	
Maximum Junction-to- Ambient	Steady- State		p-ch	40	50	°C/W	
Maximum Junction-to-Lead	Steady- State	$R_{ ext{ heta}JL}$	p-ch	2.5	3	°C/W	

II. Die / Package Information:

Process	AOD606 Standard sub-micron Low voltage N/P process	AOD606L (Green Compound) Standard sub-micron Low voltage N/P process
Package Type	5 leads TO252	5 leads TO252
Lead Frame	Copper with Ag spot	Copper with Ag spot
Die Attach	Ag Epoxy	Ag epoxy
Bond wire	Au 2mils	Au 2mils
Mold Material	Epoxy resin with silica filler	Epoxy resin with silica filler
Filler % (Spherical/Flake	e) 90/10	100/0
Flammability Rating	UL-94 V-0	UL-94 V-0
Backside Metallization	Ti / Ni / Ag	Ti / Ni / Ag
Moisture Level	Up to Level 1 *	Up to Level 1*

Note * based on info provided by assembler and mold compound supplier

III. Result of Reliability Stress for AOD606 (Standard) & AOD606L (Green)

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures
Solder Reflow Precondition	Standard: 1hr PCT+3 cycle reflow@260°c Green: 168hr 85°c /85%RH +3 cycle reflow@260°c	Ohr	Standard: 5 lots	825 pcs	0
HTGB	Temp = 150°c, Vgs=100% of Vgsmax	168 / 500 hrs 1000 hrs	3 lots (Note A)	246 pcs 77+5 pcs / lot	0
HTRB	Temp = 150°c , Vds=80% of Vdsmax	168 / 500 hrs 1000 hrs	3 lots (Note A)	246pcs 77+5 pcs / lot	0
HAST	130 +/- 2°c , 85%RH, 33.3 psi, Vgs = 80% of Vgs max	100 hrs	Standard: 5 lots (Note B)	275 pcs 50+5 pcs / lot	0
Pressure Pot	121°c , 29.7psi, 100%RH	96 hrs	Standard: 5 lots (Note B)	275pcs 50+5 pcs / lot	0
Temperature Cycle	-65°c to 150°c , air to air,	250 / 500 cycles	Standard: 5 lots (Note B)	275pcs 50+5 pcs / lot	0

III. Result of Reliability Stress for AOD606 (Standard) & AOD606L (Green) Continues

DPA	Internal Vision Cross-section X-ray	NA	5 5 5	5 5 5	0
CSAM		NA	5	5	0
Bond Integrity	Room Temp 150°c bake 150°c bake	0hr 250hr 500hr	40 40 40	40 wires 40 wires 40 wires	0
Solderability	245°c	5 sec	15	15 leads	0

Note A: The HTGB and HTRB reliability data presents total of available AOD606 and AOD606L burn-in data up to the published date.

Note B: The pressure pot, temperature cycle and HAST reliability data for AOD606 and AOD606L comes from the AOS generic package qualification data.

IV. Reliability Evaluation

FIT rate (per billion): 14.4 MTTF = 7927 years

In general, 500 hrs of HTGB, 150 deg C accelerated stress testing is equivalent to 15 years of lifetime at 55 deg C operating conditions (by applying the Arrhenius equation with an activation energy of 0.7eV and 60% of upper confidence level on the failure rate calculation). AOS reliability group also routinely monitors the product reliability up to 1000 hr at and performs the necessary failure analysis on the units failed for reliability test(s).

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AOD606). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $Chi^2 \times 10^9 / [2 (N) (H) (Af)] = 1.83 \times 10^9 / [2 (3 \times 164) (500) (258)] = 14.4$

MTTF = 10^9 / FIT =6.94 x10⁷ hrs =7927 years

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval **N** = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55° C) Acceleration Factor [**Af**] = **Exp** [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K

V. Quality Assurance Information

Acceptable Quality Level for outgoing inspection: **0.1%** for electrical and visual. Guaranteed Outgoing Defect Rate: **< 25 ppm** Quality Sample Plan: conform to **Mil-Std-105D**