

AOWF780A70

700V, α MOS5 TM N-Channel Power Transistor

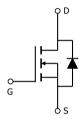
General Description

- Proprietary α MOS5TM technology
- Low R_{DS(ON)}
- Optimized switching parameters for better EMI performance
- Enhanced body diode for robustness and fast reverse recovery

Applications

 PFC and PWM stages (Flyback, LLC) of Adapter, PC Silverbox, Server, Gaming Power Supply, Industrial, TV, Lighting

Product Summary


 $\begin{array}{lll} V_{DS} @ T_{j,max} & 800V \\ I_{DM} & 28A \\ R_{DS(ON),max} & < 0.78\Omega \\ Q_{g,typ} & 11.5nC \\ E_{oss} @ 400V & 1.4 \mu J \end{array}$

100% UIS Tested 100% R_g Tested

TO-262F

Top View Bottom View

Orderable Part Number	Package Type	Form	Minimum Order Quantity
AOWF780A70	TO262F	Tube	1000

Absolute Maximum Ratings T_A=25°C unless otherwise noted Parameter Symbol Maximum Units Drain-Source Voltage 700 V_{DS} ٧ Gate-Source Voltage ±20 V_{GS} V_{GS} Gate-Source Voltage (dynamic) AC(f>1Hz) ±30 ٧ T_C=25°C 7* Continuous Drain I_D T_C=100°C Current 4.5* Α Pulsed Drain Current 28 I_{DM} Avalanche Current C L=1mH 1.7 I_{AR} Repetitive avalanche energy C 1.5 mJ E_{AR} Single pulsed avalanche energy G 11 E_AS mJ MOSFET dv/dt ruggedness 100 dv/dt V/ns Peak diode recovery dv/dt 20 T_C=25°C 23 W P_D Power Dissipation ^B Derate above 25°C 0.2 W/°C Junction and Storage Temperature Range -55 to 150 °C T_J , T_{STG} Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds $T_{\rm L}$ 300 °С

Thermal Characteristics							
Parameter	Symbol	Typical	Maximum	Units			
Maximum Junction-to-Ambient A,D	$R_{\theta JA}$	55	65	°C/W			
Maximum Junction-to-Case	$R_{\theta JC}$	4.4	5.5	°C/W			

^{*} Drain current limited by maximum junction temperature.

Electrical Characteristics (T_J=25°C unless otherwise noted)

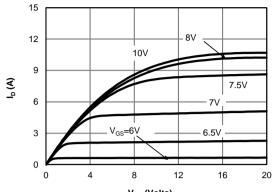
Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V, T _J =25°C	700			V
	Dialii-Source Breakdowii Voltage	$I_D = 250 \mu A, V_{GS} = 0V, T_J = 150 ^{\circ} C$		800		
BV _{DSS} /∆TJ	Breakdown Voltage Temperature Coefficient	I _D =250μA, V _{GS} =0V		0.56		V/°C
	Zero Gate Voltage Drain Current	V _{DS} =700V, V _{GS} =0V			1	μА
	Zero Gate Voltage Drain Current	V _{DS} =560V, T _J =125°C			10	
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =5V _, I _D =250μA	2.9	3.5	4.1	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =1.4A		0.7	0.78	Ω
g _{FS}	Forward Transconductance	V _{DS} =10V, I _D =1.4A		3		S
V_{SD}	Diode Forward Voltage	I _S =1.4A,V _{GS} =0V		0.8	1.2	V
Is	Maximum Body-Diode Continuous Current				7	Α
I _{SM}	Maximum Body-Diode Pulsed Current ^C				28	Α
DYNAMIC	CPARAMETERS			•	•	
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =100V, f=1MHz		675		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =100V, I=1MH2		18		pF
C _{o(er)}	Effective output capacitance, energy related H	V _{GS} =0V, V _{DS} =0 to 480V, f=1MHz		16.5		pF
C _{o(tr)}	Effective output capacitance, time related	VGS-0V, VDS-0 to 400V, I- 1101112		72		pF
C _{rss}	Reverse Transfer Capacitance	V_{GS} =0V, V_{DS} =100V, f=1MHz		1.8		pF
R_g	Gate resistance	f=1MHz		3.1		Ω
SWITCHI	NG PARAMETERS		•	•	•	•
Q_g	Total Gate Charge			11.5		nC
Q_{gs}	Gate Source Charge	V_{GS} =10V, V_{DS} =480V, I_{D} =3.5A		4.8		nC
Q_{gd}	Gate Drain Charge			2.8		nC
$T_{d(on)}$	Turn-On DelayTime			18		ns
T _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =400V, I_{D} =3.5A,		9		ns
T _{d(off)}	Turn-Off DelayTime	$R_G=5\Omega$		30		ns
T _f	Turn-Off Fall Time			12		ns
T _{rr}	Body Diode Reverse Recovery Time			230		ns
I _{rm}	Peak Reverse Recovery Current	I_F =3.5A, dI/dt=100A/ μ s, V_{DS} =400V		16.5		Α
Q _{rr}	Body Diode Reverse Recovery Charge	9		2.5		μС

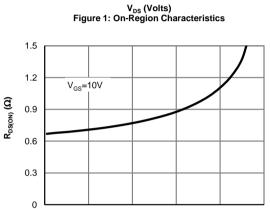
- A. The value of R $_{\theta JA}$ is measured with the device in a still air environment with T $_A$ =25 $^{\circ}$ C.
- B. The power dissipation P_D is based on $T_{J(MAX)}=150^\circ$ C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C, Ratings are based on low frequency and duty cycles to keep initial T_J =25° C.

- D. The R _{BJA} is the sum of the thermal impedance from junction to case R _{BJC} and case to ambient.

 E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

 F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}=150^\circ$ C. The SOA curve provides a single pulse rating. G. L=60mH, $I_{AS}=0.6A$, $R_G=25\Omega$, Starting $T_J=25^\circ$ C.
- H. $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{(BR)DSS}}$. I. $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{(BR)DSS}}$.

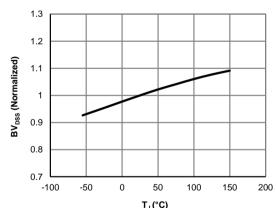

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.


AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

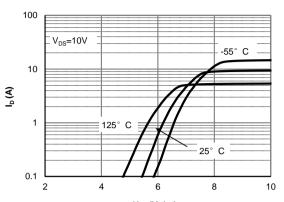
Rev.1.1: February 2024 www.aosmd.com Page 2 of 6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

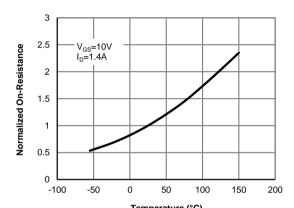
 $\label{eq:local_local} I_{D}\left(\mathbf{A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage

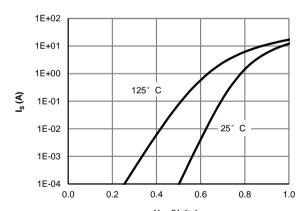

6

8


10

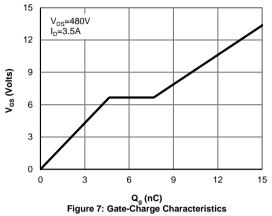
4

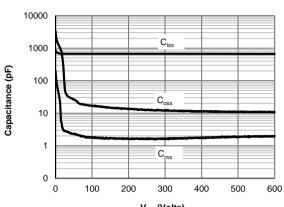

0


 $T_J(^{\circ}C)$ Figure 5: Break Down vs. Junction Temparature

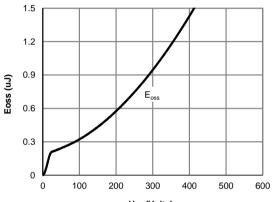
V_{GS} (Volts) Figure 2: Transfer Characteristics

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature

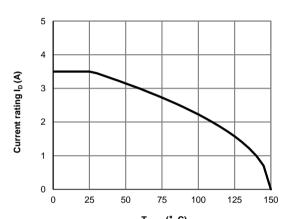


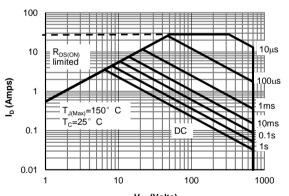

V_{SD} (Volts) Figure 6: Body-Diode Characteristics

Rev.1.1: February 2024 www.aosmd.com Page 3 of 6



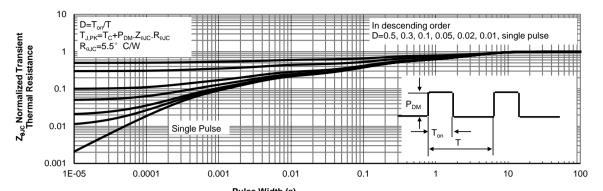
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS




V_{DS} (Volts)
Figure 8: Capacitance Characteristics

V_{DS} (Volts) Figure 9: Coss stored Energy

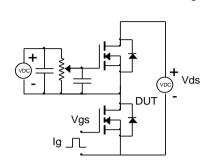
T_{CASE} (° C)
Figure 10: Current De-rating (Note F)

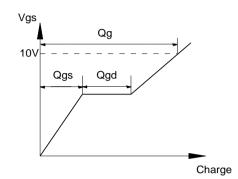


 $V_{\rm DS}$ (Volts) Figure 11: Maximum Forward Biased Safe Operating Area (Note F)

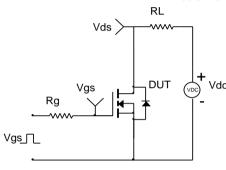
www.aosmd.com Rev.1.1: February 2024 Page 4 of 6

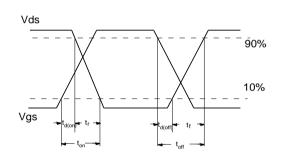
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

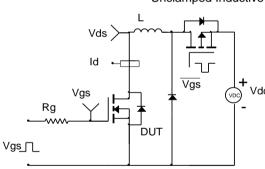


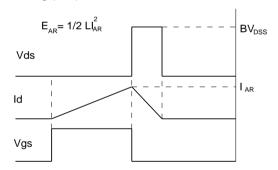

Pulse Width (s)
Figure 12: Normalized Maximum Transient Thermal Impedance (Note F)

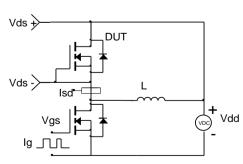
Rev.1.1: February 2024 **www.aosmd.com** Page 5 of 6

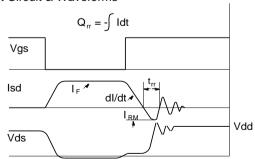



Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

