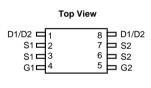
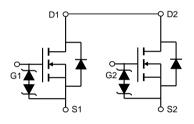


20V Common-Drain Dual N-Channel MOSFET

General Description

The AO8820 uses advanced trench technology to provide excellent $R_{\mathrm{DS(ON)}}$, low gate charge and operation with gate voltages as low as 1.8V while retaining a 12V $V_{\mathrm{GS(MAX)}}$ rating. It is ESD protected. This device is suitable for use as a uni-directional or bi-directional load switch, facilitated by its common-drain configuration.


Product Summary


 $\begin{array}{lll} V_{DS} & 20V \\ I_D \; (at \, V_{GS} \! = \! 10V) & 7A \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 10V) & < 21 m \Omega \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 4.5V) & < 24 m \Omega \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 3.6V) & < 28 m \Omega \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 2.5V) & < 32 m \Omega \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 1.8V) & < 50 m \Omega \end{array}$

ESD protected!

Absolute Maximum Ratings T _A =25°C unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V _{DS}	20	V		
Gate-Source Voltage		V _{GS}	±12	V		
Continuous Drain	T _A =25°C		7			
Current	T _A =70°C	I _D	5.5	A		
Pulsed Drain Currer	nt ^C	I _{DM}	30			
	T _A =25°C	В	1.5	W		
Power Dissipation ^B	T _A =70°C	P _D	0.96	VV		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C		

Thermal Characteristics							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	64	83	°C/W		
Maximum Junction-to-Ambient AD	Steady-State		89	120	°C/W		
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	53	70	°C/W		

Electrical Characteristics (T_{.1}=25°C unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Min	Тур	Max	Units	
STATIC F	PARAMETERS							
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		20			V	
I _{DSS}	Zana Cata Valta na Duain Commant	V _{DS} =16V, V _{GS} =0V				1	^	
	Zero Gate Voltage Drain Current		T _J =55°C			5	μΑ	
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±10V				10	μΑ	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		0.5	0.8	1.1	V	
I _{D(ON)}	On state drain current	V_{GS} =10V, V_{DS} =5V		30			Α	
		V_{GS} =10V, I_D =7A		13	17.2	21		
			T _J =125°C		24	29		
	Statia Drain Sauras On Basistanas	V_{GS} =4.5V, I_{D} =6.6A		15	19.4	24		
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =3.6V, I_D =6A		16	20.7	28	mΩ	
		V_{GS} =2.5V, I_{D} =5.5A		18	25	32	32 50	
		V_{GS} =1.8V, I_{D} =2A			35	50		
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=7A$			25		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.65	1	V	
Is	Maximum Body-Diode Continuous Current					2.5	Α	
DYNAMIC	PARAMETERS		•		•		•	
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =10V, f=1MHz			500		pF	
C _{oss}	Output Capacitance				100		pF	
C _{rss}	Reverse Transfer Capacitance				52		pF	
SWITCHI	NG PARAMETERS	•	•		•		•	
Q_g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =10V, I _D =7A			6	9	nC	
Q_{gs}	Gate Source Charge				2		nC	
Q_{gd}	Gate Drain Charge				1		nC	
t _{D(on)}	Turn-On DelayTime				0.2		us	
t _r	Turn-On Rise Time	V_{GS} =5V, V_{DS} =10V, R_L =1.4 Ω , R_{GEN} =3 Ω			1.5		us	
t _{D(off)}	Turn-Off DelayTime				7.4		us	
t _f	Turn-Off Fall Time				18		us	
t _{rr}	Body Diode Reverse Recovery Time	I _F =7A, dI/dt=100A/μs			9		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =7A, dI/dt=100A/μs			10		nC	

A. The value of R_{0JA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leqslant 10s junction-to-ambient thermal resistance.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

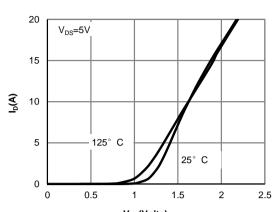
AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

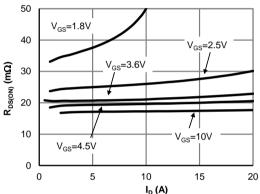
C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150° C. Ratings are based on low frequency and duty cycles to keep initial $T_J = 25^{\circ} C$.

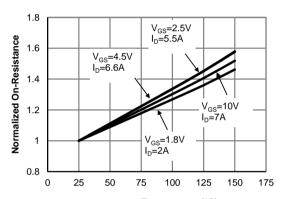
D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

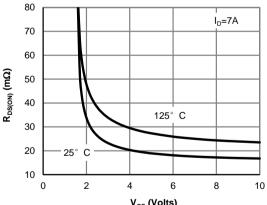
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

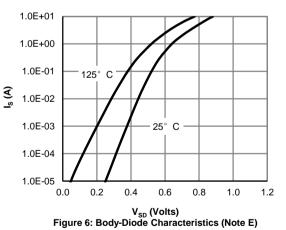
F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with


²oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.


TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS


V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)


V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)


 $\label{eq:ldot} {\rm I_D}\left({\rm A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature (Note E)

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

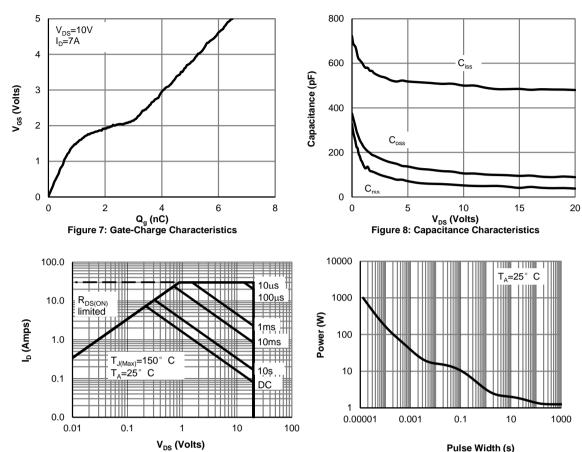
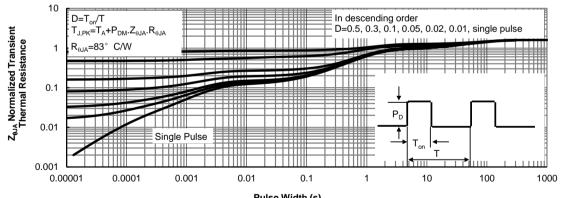
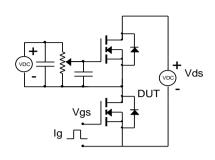
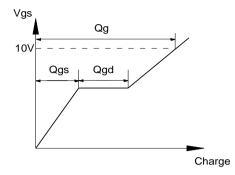
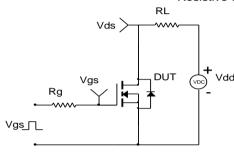



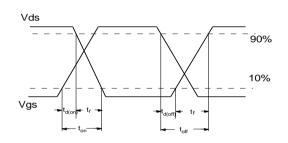
Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

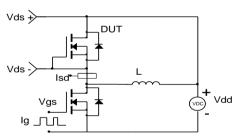

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toAmbient (Note F)

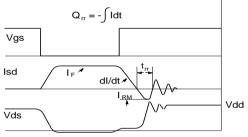


Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)




Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

