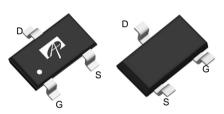
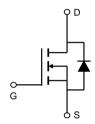


AO3422

N-Channel Enhancement Mode Field Effect Transistor

General Description


The AO3422 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$ and low gate charge. It offers operation over a wide gate drive range from 2.5V to 12V. This device is suitable for use as a load switch.


Features

$$\begin{split} &V_{DS}\left(V\right) = 55V \\ &I_{D} = 2.1A \ \ (V_{GS} = 4.5V) \\ &R_{DS(ON)} < 160m\Omega \left(V_{GS} = 4.5V\right) \\ &R_{DS(ON)} < 200m\Omega \left(V_{GS} = 2.5V\right) \end{split}$$

SOT23
Top View Bottom View

Absolute Maximum Ratings T_A=25°C unless otherwise noted Symbol Maximum Units Parameter Drain-Source Voltage V_{DS} 55 Gate-Source Voltage V_{GS} ±12 ٧ T_A=25°C Continuous Drain 2.1 Current A T_A=70°C 1.7 Α I_D Pulsed Drain Current 10 I_{DM} T_A=25°C 1.25 P_D W T_A=70°C 8.0 Power Dissipation °C Junction and Storage Temperature Range T_J, T_{STG} -55 to 150

Thermal Characteristics									
Parameter		Symbol	Тур	Typ Max Unit					
Maximum Junction-to-Ambient A	t ≤ 10s	D	75	100	°C/W				
Maximum Junction-to-Ambient A	Steady-State	$R_{\theta JA}$	115	150	°C/W				
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	48	60	°C/W				

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =10mA, V _{GS} =0V		55			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =44V, V_{GS} =0V				1	μА
	Zero Gate Voltage Brain Gurrent		T _J =55°C			5	μΑ
I _{GSS}	Gate-Source leakage current	V_{DS} =0V, V_{GS} =±12V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$		0.6	1.3	2	V
I _{D(ON)}	On state drain current	V_{GS} =4.5V, V_{DS} =5V		10			Α
R _{DS(ON)}		V _{GS} =4.5V, I _D =2.1A			125	160	mΩ
	Static Drain-Source On-Resistance		T _J =125°C		175	210	
		V _{GS} =2.5V, I _D =1.5A			157	200	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =2.1A			11		S
V_{SD}	Diode Forward Voltage	I _S =1A			0.78	1	V
Is	Maximum Body-Diode Continuous Curre			1	Α		
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =25V, f=1MHz			214	300	pF
C _{oss}	Output Capacitance				31		pF
C _{rss}	Reverse Transfer Capacitance				12.6		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			1.3	3	Ω
SWITCHI	NG PARAMETERS						
Q_g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =27.5V, I _D =2.1A			2.6	3.3	nC
Q_{gs}	Gate Source Charge				0.6		nC
Q_{gd}	Gate Drain Charge				0.8		nC
t _{D(on)}	Turn-On DelayTime				2.3		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =27.5V, R_L =12 Ω , R_{GEN} =3 Ω			2.4		ns
t _{D(off)}	Turn-Off DelayTime				16.5		ns
t _f	Turn-Off Fall Time				2		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =2.1A, dI/dt=100A/μs			20	30	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =2.1A, dI/dt=100A/μs			17		nC

A: The value of R $_{0JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25 $^\circ$ C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

Rev2: Sep 2010

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta,JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta,JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

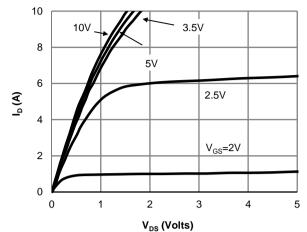
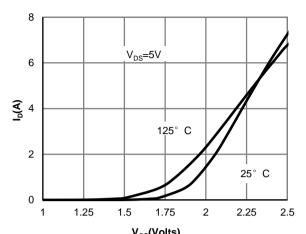
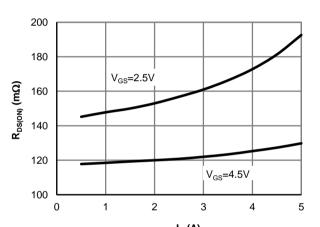




Fig 1: On-Region characteristics

V_{GS}(Volts)
Figure 2: Transfer Characteristics

 $\rm I_D$ (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage

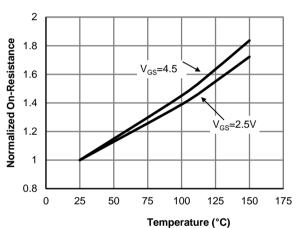
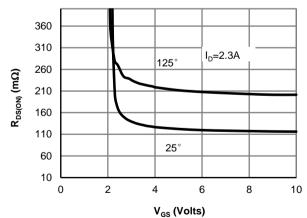
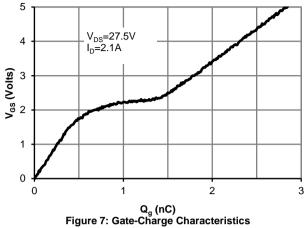
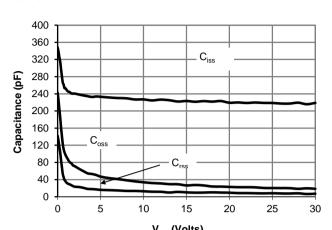


Figure 4: On-Resistance vs. Junction Temperature





Figure 5: On-Resistance vs. Gate-Source Voltage



V_{SD} (Volts) Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

V_{DS} (Volts)
Figure 8: Capacitance Characteristics

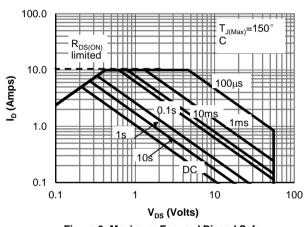
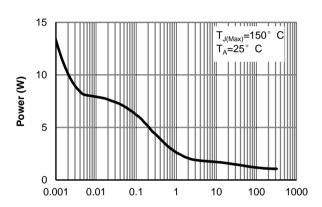



Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

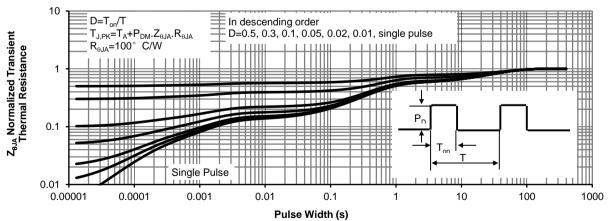
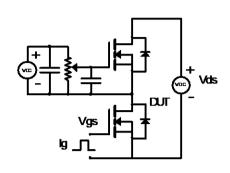
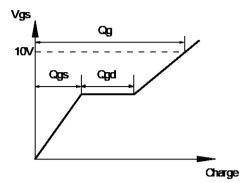
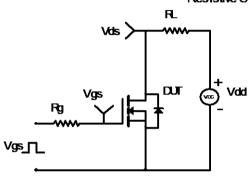
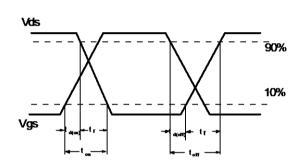
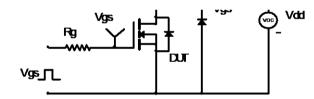
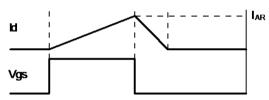




Figure 11: Normalized Maximum Transient Thermal Impedance

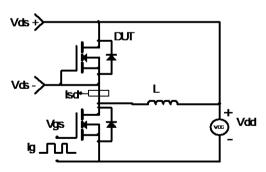


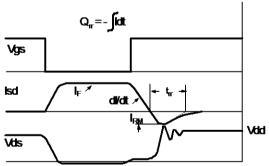

Gate Charge Test Circuit & Waveform





Resistive Switching Test Circuit & Waveforms





Diode Recovery Test Circuit & Waveforms

