

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC I	PARAMETERS					
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V, T _J =25°C	600	-	-	
		I_D =250µA, V_{GS} =0V, T_J =150°C	650	700	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =600V, V _{GS} =0V	-	-	1	μA
		V _{DS} =480V, T _J =150°C	-	10	-	
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V, V_{GS}=\pm 30V$	-	-	±100	nA
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =5V,I _D =250μA	2.8	3.5	4.1	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =3.8A, T _J =25°C	-	0.35	0.399	Ω
		V _{GS} =10V, I _D =3.8A, T _J =150°C	-	0.98	1.11	Ω
V _{SD}	Diode Forward Voltage	$I_S=5.5A, V_{GS}=0V, T_J=25^{\circ}C$	-	0.84	-	V
ls	aximum Body-Diode Continuous Current		-	-	11	А
I _{SM}	Maximum Body-Diode Pulsed Current ^C		-	-	45	А
DYNAMI	C PARAMETERS					
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =100V, f=1MHz	-	545	-	pF
C _{oss}	Output Capacitance		-	37.3	-	pF
C _{o(er)}	Effective output capacitance, energy related ¹	V_{GS} =0V, V_{DS} =0 to 480V, f=1MHz	-	30.8	-	pF
C _{o(tr)}	Effective output capacitance, time related ^J		-	93.6	-	pF
C _{rss}	Reverse Transfer Capacitance	V _{GS} =0V, V _{DS} =100V, f=1MHz	-	1.42	-	pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	-	16.5	-	Ω
SWITCH	ING PARAMETERS	-				
Q _g	Total Gate Charge	V _{GS} =10V, V _{DS} =480V, I _D =5.5A	-	11	-	nC
Q _{gs}	Gate Source Charge		-	2.8	-	nC
Q _{gd}	Gate Drain Charge		-	3.8	-	nC
t _{D(on)}	Turn-On DelayTime		-	20	-	ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =400V, I _D =5.5A, R _G =25Ω	-	20	-	ns
t _{D(off)}	Turn-Off DelayTime		-	59	-	ns
t _f	Turn-Off Fall Time	1	-	20	-	ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =5.5A,dI/dt=100A/µs,V _{DS} =400V	-	250	-	ns
l _{rm}	Peak Reverse Recovery Current	I _F =5.5A,dI/dt=100A/µs,V _{DS} =400V	-	21	-	А
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =5.5A,dl/dt=100A/μs,V _{DS} =400V	-	3.3	- I	μC

A. The value of R $_{\rm BJA}$ is measured with the device in a still air environment with T $_{\rm A}$ =25 $^\circ\,$ C.

B. The power dissipation P_{D} is based on $T_{J(MAX)}=150^{\circ}$ C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

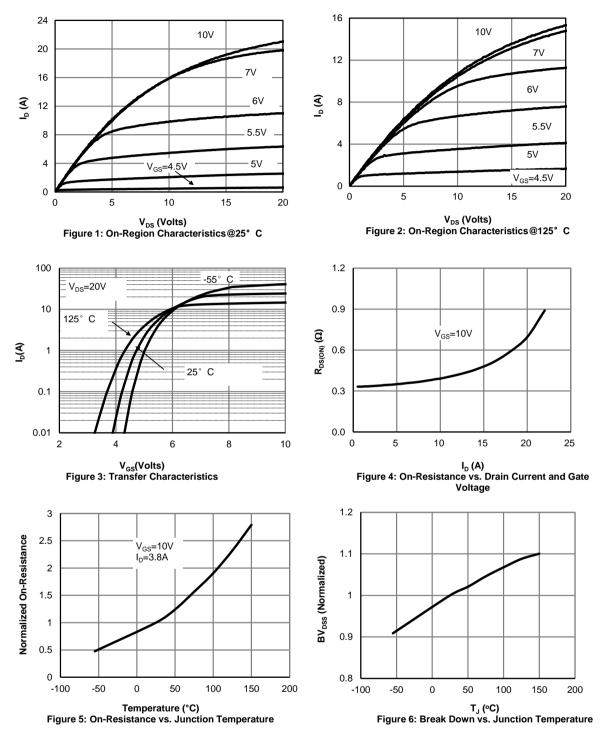
C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150° C, Ratings are based on low frequency and duty cycles to keep initial T₁=25° C.

D. The R_{aJA} is the sum of the thermal impedance from junction to case R_{aJC} and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

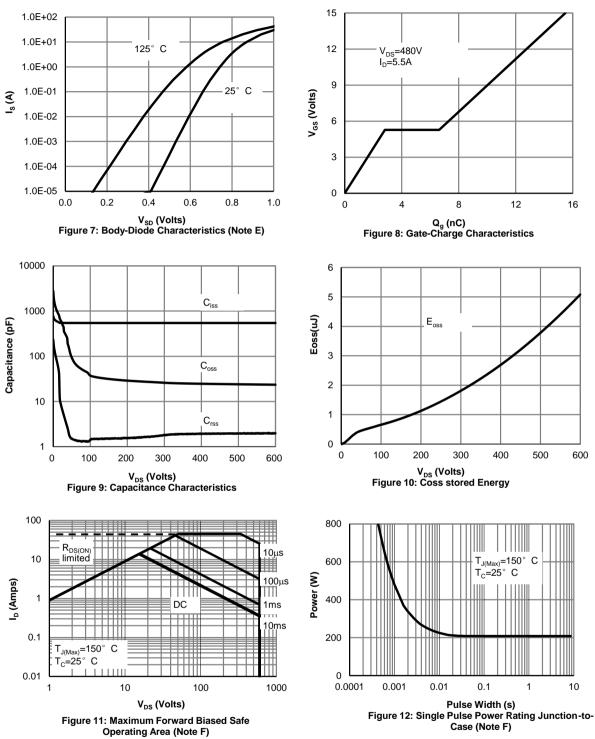
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsirk, assuming a maximum junction temperature of T_{J/MAXI}=150° C. The SOA curve provides a single pulse rating.

G. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C.

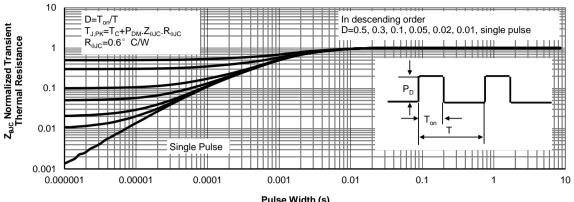
H. L=60mH, I_{AS} =2A, V_{DD} =150V, Starting T_{J} =25° C

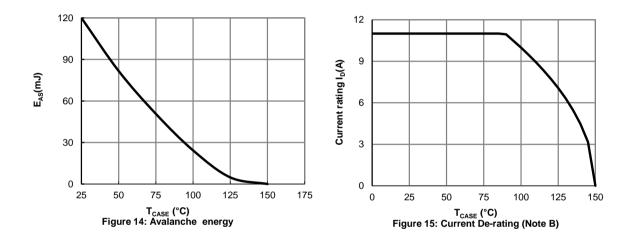

1. C_{o(e)} is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{(BR)DSS}. J. C_{o(tr)} is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{(BR)DSS}.

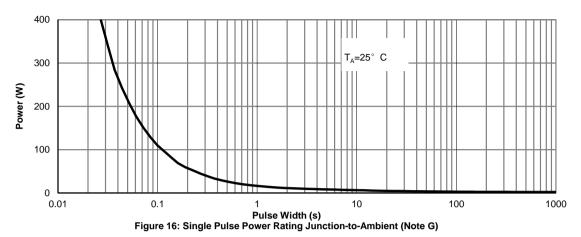
K. Wave soldering only allowed at leads.

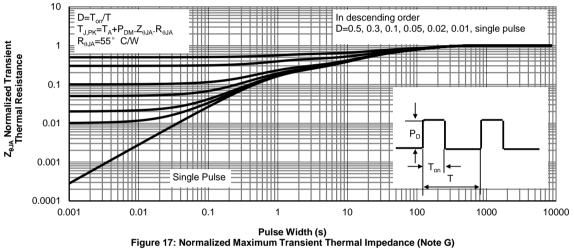

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

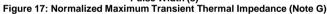
AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

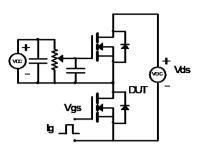


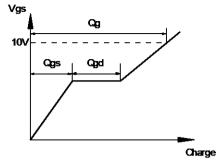


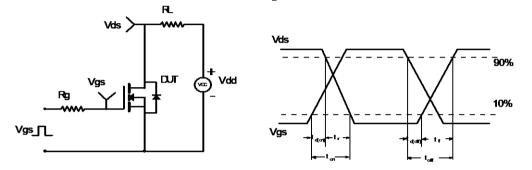




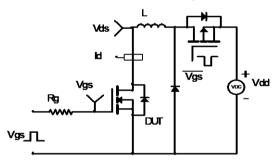

Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance (Note F)

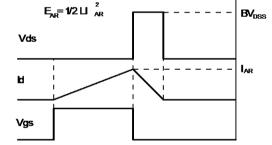




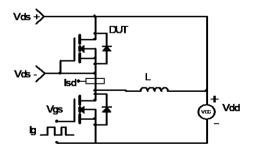


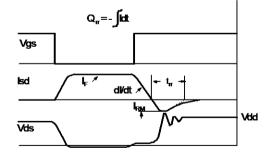
Gate Charge Test Circuit & Wave form





Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

