

General Description

AOZ17517QI is a current-limiting protection eFuse targeting applications that require front end protection at the input line. Both VIN and VOUT terminals are rated at 27 V absolute maximum. There is a programmable soft-start feature that controls the inrush current for highly capacitive loads. It also has Input Under-Voltage Lock Out (UVLO), and Thermal Shut Down Protection (TSD). The device can be configured for latch off or auto retry after a fault shutdown.

AOZ17517QI features an internal over current protection circuit that protects the supply from large load current. The over current threshold can be set externally with a resistor. AOZ17517QI also integrates accurate analog current and voltage monitoring signals. It can also be paralleled for higher current applications.

Multiple devices can operate concurrently and seamlessly distribute the current during the startup phase.

AOZ17517QI is available in 5 mm x 5 mm 32-pin QFN package.

Features

- 4.5V to 20V input voltage operating range
- 60A maximum output current
- 27 V abs max voltage rating on VIN and VOUT pin
- Typical RON: 0.65 mΩ
- Programmable Output Soft Start
- Programmable Current Limit
- Short-Circuit Protection
- Input Under-Voltage Lock Out (UVLO)
- Thermal Shut Down Protection (TSD)
- Accurate Current Monitor
- Analog Temperature Output
- Current Sharing for Higher Current Applications
- ±2kV HBM ESD rating
- ±1 kV CDM ESD rating

Applications

- Server
- PC Card
- Networking
- High power industrial 12 V rail protection

Typical Application

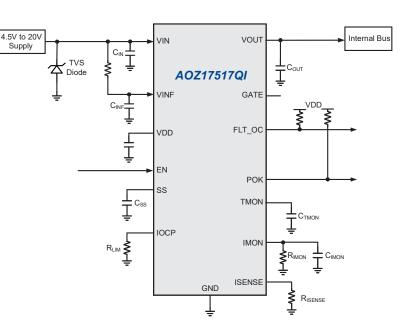


Figure 1. Stand-alone Application

Typical Application

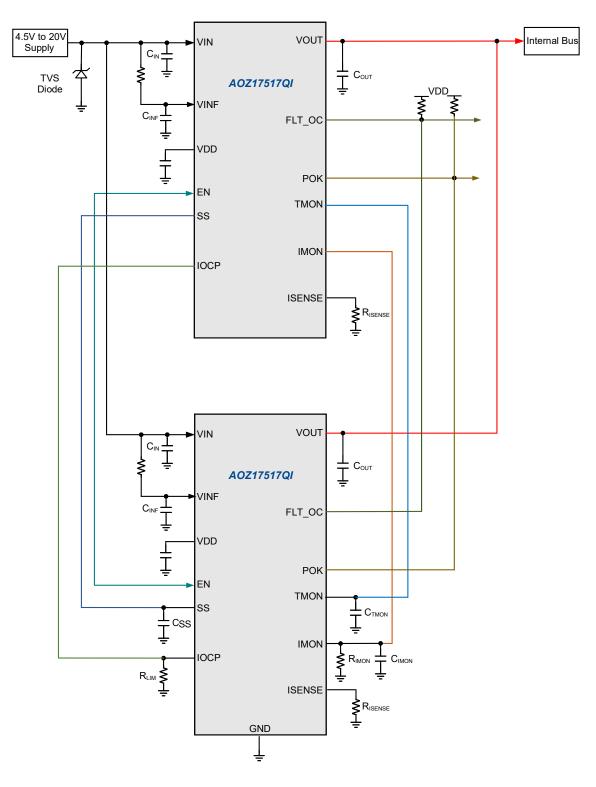
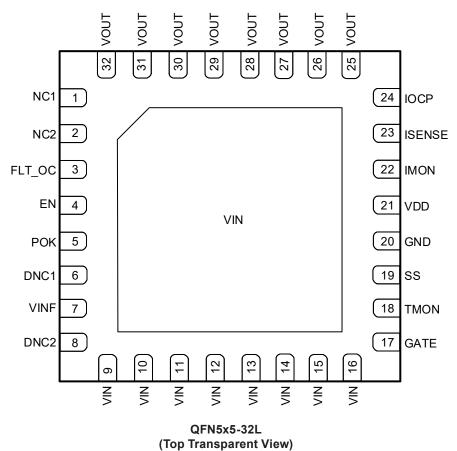


Figure 2. Parallel Application

Ordering Information


Part Number	Fault Recovery	Operating Voltage Range	Package	Environmental
AOZ17517QI-01	Auto-restart	4.5V — 20V	QFN5x5-32L	RoHS
AOZ17517QI-02	Latch-off	4.5V — 20V	QFN5x5-32L	RoHS

AOS products are offered in packages with Pb-free plating and compliant to RoHS standards. Please visit https://aosmd.com/sites/default/files/media/AOSGreenPolicy.pdf for additional information.

Please visit https://aosmd.com/sites/default/files/media/AOSGreenPolicy.pdf for additional information

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Function
1	NC1	No Connection1.
2	NC2	No Connection2.
3	FLT_OC	Open-drain output to indicate overcurrent condition. Low indicates the device is in over current condition. The FLT_OC output does not report over current during soft-start.
4	EN	Enable input. Active high.
5	POK	OK status indicator output (Open Drain). Low indicates that the switch was turned off by a fault.
6	DNC1	Do Not Connect1. Reserved for test.
7	VINF	Control circuit power supply input. Connect to VIN pins through an RC filter.
8	DNC2	Do Not Connect2. Reserved (Source sense connection).
9,10,11,12, 13,14,15,16, EPAD	VIN	Supply input. Connected to main power supply.
17	GATE	Gate pin of the internal MOSFET
18	TMON	Analog temperature monitor output.
19	SS	Soft Start control. Connect a capacitor CSS from SS to GND to set the soft start time.
20	GND	Ground
21	VDD	Linear regulator output for biasing internal circuities. Connect 2.2 uF-10 uF capacitor from this pin to ground.
22	IMON	Analog current monitor output.
23	ISENSE	Current sense feedback output (current). Scaling the voltage developed at this pin with a resistor to ground makes this also an input for several current limiting functions and overcurrent indicator OC.
24	IOCP	Over current threshold setpoint input for normal operation (after soft-start). Connect a 1% resistor RIOCP from IOCP to GND to set the current limit threshold.
25,26,27,28, 29,30,31,32	VOUT	Source of the internal N-Channel MOSFET. Connect to load. They are internally connected together.

Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage the device.

Parameter	Rating
VIN, VINF, VOUT to GND	-0.3V to +27V
VDD to GND	-0.3 V to +6 V
Signal pins (EN, SS)	-0.3 V to +VDD
Junction Temperature (T _J)	+150°C
Storage Temperature (T _S)	-65 °C to +150 °C
ESD Rating HBM All Pins	±2kV

Recommended Operating Conditions

The device is not guaranteed to operate beyond the Maximum Recommended Operating Conditions.

Parameter	Rating
VIN, VINF to GND	4.5 V to 20 V
EN, Isense, SS, FLT_OC, I _{OCP} , I _{MON} , T _{MON} ,POK to GND	0 V to 5 V
Switch DC Current (I _{SW})	0 A to 60 A
Junction Temperature (T _J)	-40 °C to +125 °C

Electrical Characteristics

 $V_{VIN} = V_{VINF} = 12.0 \text{ V}, V_{EN} = 3.3 \text{ V}, C_{VINF} = 0.1 \mu\text{F}, C_{VDD} = 4.7 \mu\text{F}, C_{TIMON} = 0.1 \mu\text{F}, R_{TMON} = 1 \text{ k}\Omega, C_{SS} = 100 \text{ nF}$ (unless specified otherwise) Min/Max values are valid for the temperature range -40°C $\leq T_A = T_J \leq 125$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
General					1	
V _{IN}	Input Supply Voltage	$R_{IOCP} = 121 k\Omega$	4.5		20	V
V _{DD}	VDD Output Voltage	I _{VDD} = 0m A, VINF = 6 V	4.65	5	5.35	V
ICapability	VDD Current Capability	VINF = 5.5 V		40		mA
I _{VDD_Limit}	VDD Current Limit	VINF = 12V	50	90		mA
V _{DD_Dropout}	VDD Dropout Voltage	VINF = 4.5 V, I _{VDD} = 25 mA		200	350	mV
V _{DD_UVLO_R}	Under-Voltage Lockout Threshold	VDD rising	3.6	4	4.4	V
V _{DD_UVLO_F}	Under-Voltage Lockout Threshold	VDD falling	3.2	3.6	4	V
V _{DD_UVLO_HYS}	Under-Voltage Lockout Hysteresis			400		mV
I _{IN_ON}	VIN Input Quiescent Current	EN = 3.3 V, I _{OUT} = 0 A		3.5	5	mA
I _{IN_OFF}	VIN Input Shutdown Current	EN = 0 V		3.5	5	mA
R _{ON}	Switch On Resistance	I _{OUT} = 1 A, T _J =25 °C		0.65	1.0	mΩ
Enable						
I _{EN}	EN Bias current			5		μA
V _{EN_H}	Enable Input Logic High Threshold	EN rising, FET ON	1.2	1.4	1.6	V
V _{EN_L}	Enable Input Logic Low Threshold	EN falling	1.1	1.3	1.5	V
V _{EN_DIS}	Enable Input Logic Threshold to enable VOUT discharge circuit	EN falling, FET OFF & Vout Discharge Circuit(500 Ω) ON		1.0		V
Output Ramp	o Control (SS)					
I _{SS}	SS charging current	VSS = 0 V		6		μA
A _{VSS}	Gain to VOUT			8		V/V
IMON/ISENS	E					
IMON/IOUT ISENSE/IOUT	IMON/IOUT gain or ISENSE/IOUT gain			10		μΑ/Α
		IOUT = 10A T _A =25°C	-3.0		+3.0	%
Accuracy (single eFuse)	IMON or ISENSE Accuracy	IOUT > 10A T _A =25 °C (Note 1)	-3.0		+3.0	%
		IOUT > 10A T _A =0 to 85 °C (Note 1)	-4.5		+4.5	%

Electrical Characteristics

 $V_{VIN} = V_{VINF} = 12.0 \text{ V}, V_{EN} = 3.3 \text{ V}, C_{VINF} = 0.1 \mu\text{F}, C_{VDD} = 4.7 \mu\text{F}, C_{TIMON} = 0.1 \mu\text{F}, R_{TMON} = 1 \text{ k}\Omega, C_{SS} = 100 \text{ nF}$ (unless specified otherwise) Min/Max values are valid for the temperature range -40°C $\leq T_A = T_J \leq 125$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Over Curren	t Protection (OCP)					
V _{CL}	Current Limit Voltage	R _{IOCP} = 121 kΩ	98	100	102	%VIOCP
+		During soft start		250		
t _{HOLD}	Max Current Limit hold off time	After soft start, Vout reach 90% of Vin		1000		μs
I _{IOCP}	IOCP Bias Current		9.6	10	10.4	μA
V _{Isense_Clamp}	Isense Current Source Clamp Voltage			3		V
I _{SC_TH}	Short Circuit Threshold			100		А
t SC_Resopnse	Short Circuit Response Time (Note 1)	From IOUT >I _{SC_TH} until gate pull down		500		ns
FLT_OC OUT	ГРИТ					1
V _{FLT_OC_TH_R}	Over Current Rising Threshold		80	85	90	% VIOCP
V _{FLT_OC_TH_F}	Over Current Falling Threshold		75	80	85	% VIOCP
V _{FLT_OC_LOW}	FLT_OC Output Low Voltage	Isink = 100 µA			0.1	V
I FLT_OC_leak	FLT_OC Out Leakage Current	VOC = 5V		3.5	100	nA
T _{FLT_OC Delay_F}	Delay Rising			1		μs
T _{FLT_OC Delay_} F				1		μs
TMON OUTP						
T _{mon_bias}	Bias Voltage	T _J = 25°C		450		mV
l mon_gain	Gain			10		mV/°C
R _{Tmon}	Load Capability			1		kΩ
 Tmon_pull down	Pull Down Current			50		μΑ
ΡΟΚ ΟυΤΡυ	Т					
V _{POK_Low}	Output Low Voltage	Isink = 100 µA			0.1	V
I POK_Leakage	Out Leakage Current	5V		3.5	100	nA
T _{POK Delay_R}	Delay Rising			1		μs
T _{POK Delay_F}	Delay Falling			1		μs
FET Health C	Check					
V _{DS_TH}	VDS Short Threshold	Startup delay if Vout > V _{DS_TH} when EN goes Hi		90%		VIN
V _{DS_OK}	VDS Short OK Threshold	Startup resume if Vout falls below V_{DS_OK}		80%		VIN
Thermal Shu	itdown (TSD)		I	1	L	1
T _{SD}	Thermal Shutdown Threshold	Temperature rising		150		°C
T _{SD_HYS}	Thermal Shutdown Hysteresis	Temperature falling (AOZ17517QI-01 only)		25		°C
Dynamic Ch	aracteristics					
t _{D_ON}	Turn-On Delay Time			1		ms
t _{D_OFF}	Turn-Off Delay Time			1.5		μs
t Retry	Retry Time after fault occurs	AOZ17517QI-01 only		1		s

Thermal Characteristics

Symbol	Parameter	Тур	Units
R _{th(J-C)}	Thermal Resistance from junction to case (Note 2)	2	°C/W
R _{th(J-A)}	Thermal Resistance from junction to ambient (Note 2)	25	°C/W

Notes:

1. Guarantee by characterization and design.

2. The thermal resistances are measured on AOZ17517QI evaluation board, which is 2OZ copper 8-layer FR4 board.

Functional Block Diagram

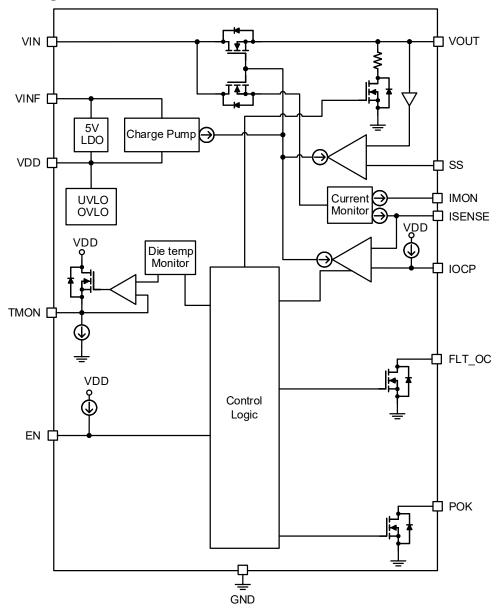


Figure 3. Functional Block Diagram

Timing Diagrams

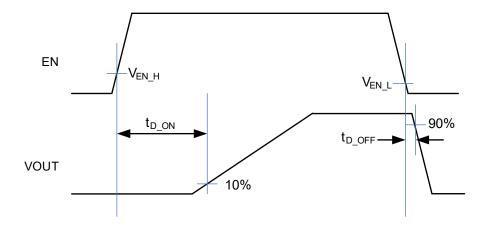
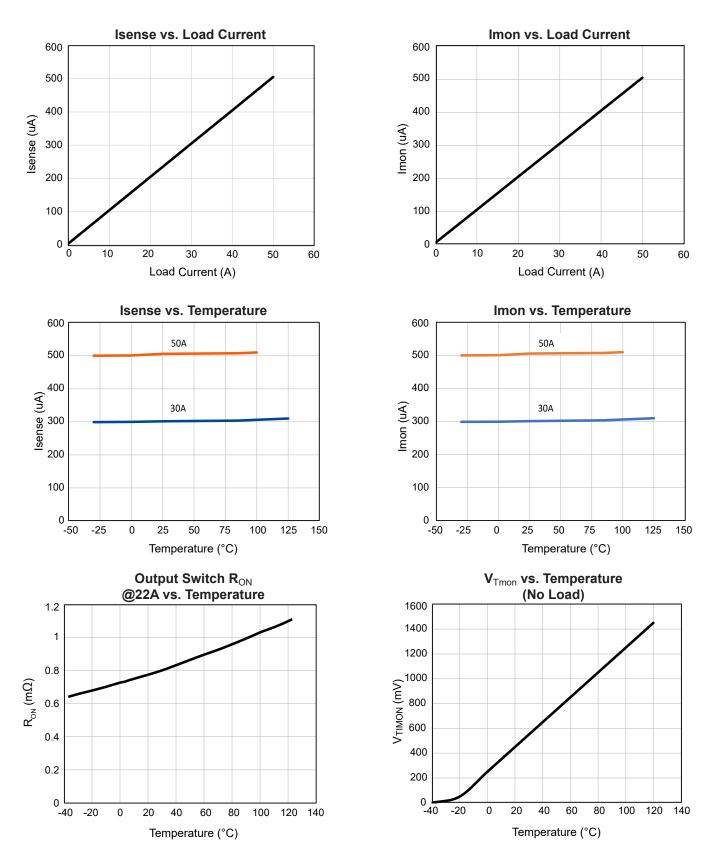
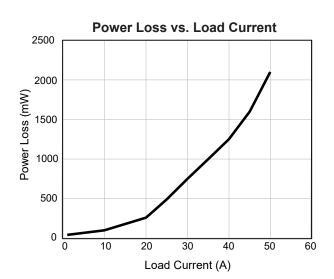
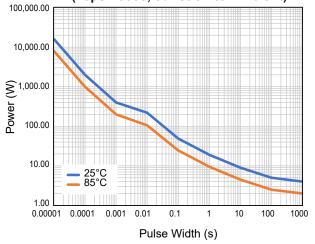



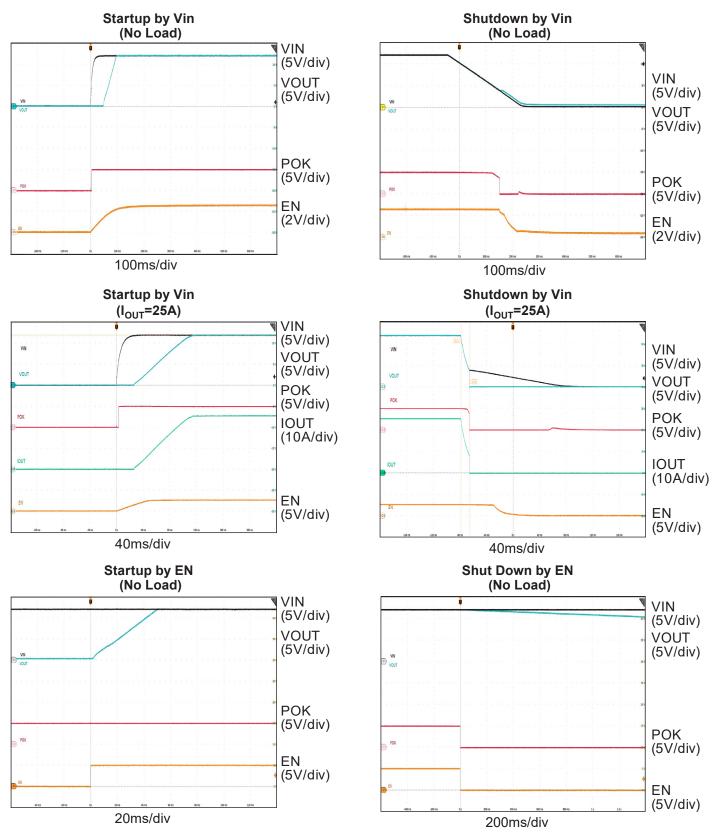
Figure 4. Turn-on and Turn-off Delay Time



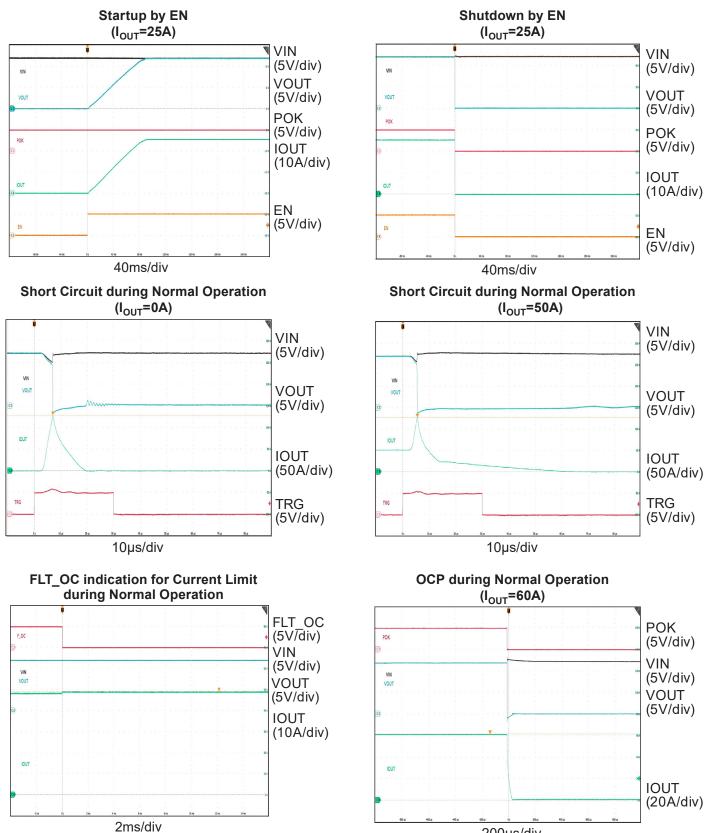

Test Conditions: VIN = 12 V, R_{ISENSE} = 2 k Ω , C_{SS} = 200 nF, R_{IOCP} = 121 k Ω , T_A = 25 °C, unless otherwise specified.



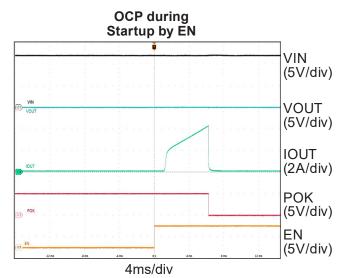
Test Conditions: VIN = 12 V, $R_{ISENSE} = 2 k\Omega$, $C_{SS} = 200 nF$, $R_{IOCP} = 121 k\Omega$, $T_A = 25 °C$, unless otherwise specified.

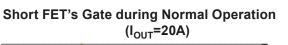


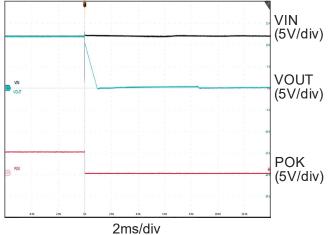
Single Pulse Power Rating (10µs-1000s, Junction to Ambient)

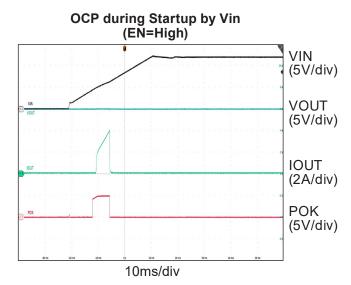


Test Conditions: VIN = 12 V, $R_{ISENSE} = 2 k\Omega$, $C_{SS} = 200 nF$, $R_{IOCP} = 121 k\Omega$, $T_A = 25 °C$, unless otherwise specified.


Test Conditions: VIN = 12V, $R_{ISENSE} = 2k\Omega$, $C_{SS} = 200 \text{ nF}$, $R_{IOCP} = 121 k\Omega$, $T_A = 25 \text{ °C}$, unless otherwise specified.




200µs/div



Test Conditions: VIN = 12 V, $R_{ISENSE} = 2k\Omega$, $C_{SS} = 200 nF$, $R_{IOCP} = 121 k\Omega$, $T_A = 25 °C$, unless otherwise specified.

General Information

The AOZ17517QI is an N-channel MOSFET co-packaged with a smart hot swap controller. It is suited for High-side current limiting and fusing in hot-swap applications. It can be used either alone, or in a parallel configuration for higher current applications.

Enable

The EN pin is the ON/OFF control for the power switch. The device is enabled when EN pin is higher than $V_{EN_{_{}}H}$, VDD is not in under-voltage lockout state, VDD > $V_{DD_{_{}}UVLO_{_{}}R}$, and POK is released high. EN pin can be driven to a logic high or logic low state to guarantee operation. The EN pin has an internal pull-up current generator connected to the internal LDO(VDD), therefore, if the pin is not connected to an external controller IC, it goes to the ON-state (device enabled). The 5µA EN bias current can be used to charge an external capacitor to delay the enable time.

Internal LDO (VDD)

The internal LDO (Low Drop Out) regulator generates 5V from VIN to bias the internal circuits. The LDO should be able to supply at least 30 mA. The recommended decoupling capacitor in the VDD pin is $2.2 \,\mu$ F to $10 \,\mu$ F. The VDD voltage is monitored for UVLO.

Input Under-Voltage Lockout (UVLO)

The under-voltage lockout (UVLO) circuit monitors the VDD voltage. The power switch is only allowed to turn on when input voltage is higher than UVLO threshold ($V_{DD_UVLO_R}$). Otherwise the switch is off.

Current Monitor (IMON) and Current Sense (ISENSE)

IMON and ISENSE provide output current information. The IC supplies the current 10μ A/A (per switch current) from these two pins. Resistors from pins to ground convert the current information into voltage level.

An IMON current, proportional to the load current flowing through the FET, is imposed on an external R_{IMON} , converting the sensed current into a voltage. A capacitor in parallel with the IMON resistor can be used to low-pass filter the IMON signal without affecting any internal operation of the device.

In parallel configuration, the IMON pins of the parallel devices have to be connected together. The voltage on the IMON pin (Bus) represents the average of the currents through the devices on the same bus (I_{out}/N).

The ISENSE pin also sources current 10μ A/A (per switch current). A resistor from the pin to ground converts the current info into voltage level. The voltage on ISENSE pin is used for the overcurrent protection and current sharing.

In parallel configuration, the voltage on the ISENSE pin represents the current through each individual device.

Programmable Over-Current Protection (IOCP)

A resistor from the IOCP pin to ground set the over current threshold. The IOCP bias current, $10 \mu A$, with the external resistor sets the voltage threshold for the current limit. The voltage on the ISENSE pin is used to compare with this voltage threshold for the current limit loop.

During soft start, the current limit is clamped according to the SOA limits.

The IOCP pin voltage determines the over-current indication point by comparing its voltage against the ISENSE pin voltage. The IOCP voltage can be applied by an external voltage source, such as D/A converter, or developed across a programming resistor to ground by the IOCP bias current, 10μ A. The recommended range of IOCP voltage is 0.2 - 1.55 V.

A 250 μ s current limit timer (t_{HOLD}) starts after over-current detection. Once the timer elapses, the internal MOSFET is shut down and the POK indicator is pulled to low status, to inform the system controller that a shutdown not due to EN.

Short Circuit Protection

During steady state, if the output voltage drops > 65 mV below input voltage (equivalent to 100A), the device interprets as short circuit condition and shuts down immediately (<500 ns).At the same time, FLT_OC pin is asserted, and POK is pulled low.

Programmable Soft Start

The AOZ17517QI start up delay and soft start time are programmable externally through SS pin. The soft start delay and ramp time can be estimated using the equations below:

$$C_{SS} = \frac{t_{ON} \times I_{SS} \times AV_{SS}}{V_{IN}}$$

where C_{SS} is in nF and t_{ON} in ms.

Iss=6 uA and AVss=8 V/V

The minimum soft start time (Css = open) is 1 ms. The typical Css values for different tss are shown in Table 1.

tss(ms)	Css(nF)	tss(ms)	Css(nF)
10	47	60	270
20	82	70	330
30	120	80	330
40	180	90	470
50	220	100	470

The actual soft start time may not be equal to the estimated value from the above equation if the operating condition exceeds the SOA of the power switch.

The maximum load capacitor value AOZ17517QI can power up depends on the soft-start time. When VIN=12V, $R_{Isense}=2k\Omega$, $R_{Ioad}=2.4\Omega$, the relationship for different quantity devices in parallel operations are shown in the Figure 5.

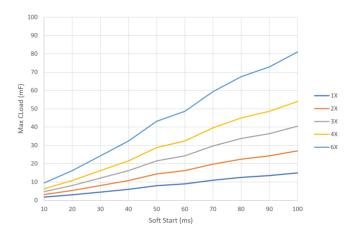


Figure 5. Maximum CLOAD vs. Softstart Time(Isense=2kΩ, Rload22.4Ω, VIN=12V)

FLT_OC

FLT_OC is an open-drain, active-low output that reports the over-current warning when VOUT \geq 85%VIN. Once VISENSE is higher than 85% of the IOCP voltage, FLT_OC is driven low. When VISENSE drops below the threshold, FLT_OC is released high again. The VFLT_OC_TH trip points are based on a percentage of VIOCP. Recommended pull up resistor is 100 k Ω to VDD.

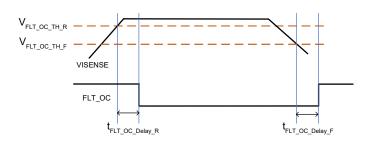


Figure 6. FLT OC Delay Time

POK

POK is open-drain output that requires an external pull up $100 \text{ k}\Omega$ resistor, RPOK, to VDD/external power supply.

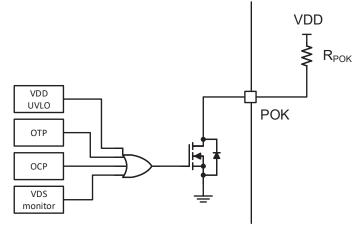
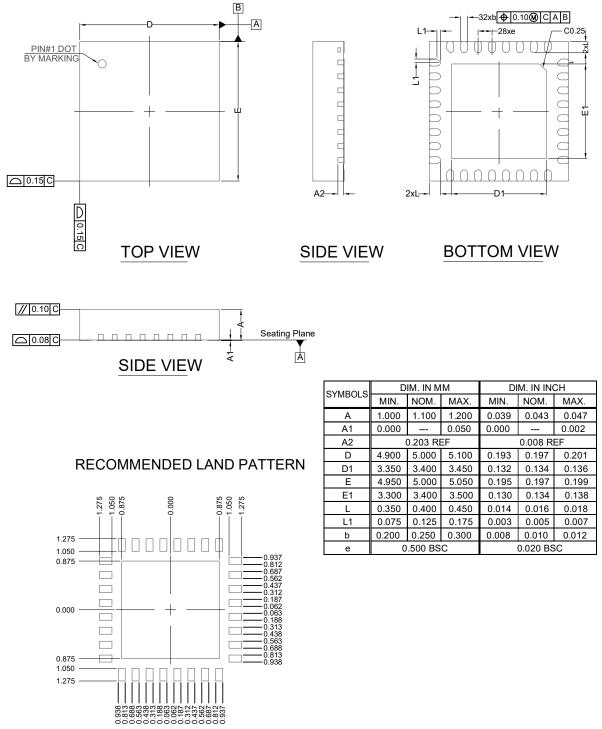


Figure 7. POK Block Diagram

POK is internally pulled low under the following conditions:

- VDD voltage is below UVLO voltage at any time.
- EN disabled and VDS_OK is false (indicates a short from VIN to VOUT. The device is prevented from powering up. The device is allowed to power up once VOUT < VDS_OK.).
- Over current
- Over Temperature

When multiple AOZ17517QI are paralleled together, the POK pin should be connected together to synchronize hiccup timing and prevent cascading faults.


Thermal Monitor (TMON) and Thermal Shut Down Protection (TSD)

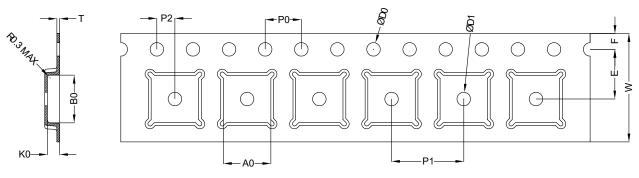
TMON is a voltage output proportional to controller's die temperature and provides a signal proportional to the die temperature on the TMON pin. TMON has a voltage of 450 mV at 25 °C and temperature gain of 10 mV/°C.

Thermal shutdown protects device from excessive temperature. The power switch is turned off when the die temperature reaches thermal shutdown threshold of 150 °C. There is a 25 °C hysteresis. The power switch is allowed to turn on again if die temperature drops below approximately 125 °C. If EN is high, the device will turn on when the junction temperate drops below the threshold.

Package Dimensions, QFN5x5-32L

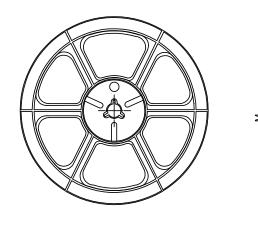
UNIT: mm

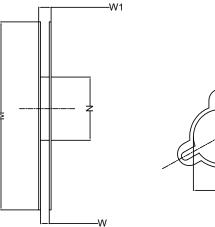
NOTE:


1. CONTROLLED DIMENSIONS ARE IN MILLIMETERS. DIMENSIONS IN INCHES ARE CONVERTED AS REFERENCE ONLY

-S

Tape and Reel Dimensions, QFN5x5-32L

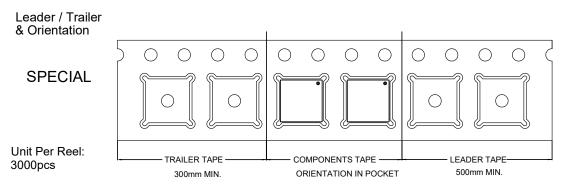

Carrier Tape



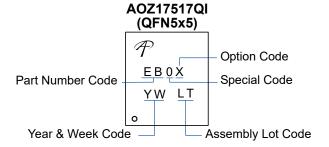
UNIT: MM

PACKAGE	A0	B0	K0	D0	D1	W	Е	F	P0	P1	P2	Т
QFN5x5	5.25 ±0.10	5.25 ±0.10	1.35 ±0.10	1.50 +0.10 -0.00	1.50 MIN	12.00 +0.30 -0.10	5.50 ±0.05	1.75 ±0.10	4.00 ±0.10	8.00 ±0.10	2.00 ±0.05	0.30 ±0.05

Reel



UNIT: MM


TAPE SIZE	REEL SIZE	М	Ν	W	W1	Н	К	S
12 mm	Ø330	Ø330 ±0.50	Ø97.00 ±0.10	13.0 ±0.30	17.40 ±1.00	Ø13.0 +0.5 -0.2	10.6	2.00 ±0.50

Carrier Tape

Part Marking

Part Number	Description	Marking Code
AOZ17517QI-01	Auto-Restart	EB01
AOZ17517QI-02	Latch-Off	EB02

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. Alpha and Omega Semiconductor does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or device, or system whose failure to perform can be (b) support or sustain life, and (c) whose failure to perform reasonably expected to cause the failure of the life support when properly used in accordance with instructions for use device or system, or to affect its safety or effectiveness. provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support,