

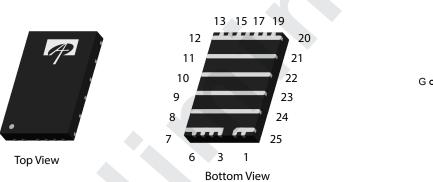
AOFQ018V10GA1 100V GaN Enhancement-mode

Power Transistor

Features

- GaN-on-Silicon E-mode HEMT technology
- Very low gate charge
- Ultra-low on resistance
- Very small footprint

Applications


- High frequency DC-DC converter
- Point of Load
- RF envelope tracking
- PC charger
- Mobile power bank
- Motor driver

Pin Configuration

Product Summary at T_J = 25°C

100 V
1.8mΩ
22nC
320 A
125nC

Pin Information

Pin	Pin Description	Pin Function
1,2,25	Gate	Driver Gate
3-7,9,11,21,23	Source	Source
8,10,12-20,22,24	Drain	Power Drain

Ordering Information

Ordering Part Number	Package Type	Form	Shipping Quantity
AOFQ018V10GA1	FCQFN 4X6	Tape and Reel	1500

Contact local sales office for full product datasheet.

Absolute Maximum Ratings

 $(T_1 = 25^{\circ}C, unless otherwise noted)$

Symbol	Parameter	AOFQ018V10GA1	Units
V _{DS}	Drain-to-Source Voltage (Continuous)	100	V
V _{DS(tr)}	Drain-to-Source Voltage (up to 300,000 5ms pulse at 150 °C)	120	V

Absolute Maximum Ratings

 $(T_{J} = 25^{\circ}C, unless otherwise noted)$

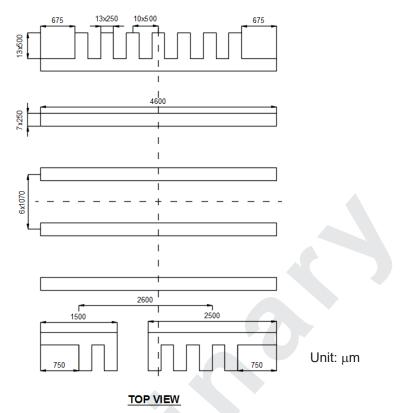
Symbol	Parameter	AOFQ018V10GA1	Units	
I _D	Continuous current	100	•	
	Pulsed (25°C, T _{Pulse} = 100 μs)	320	A	
V _{GS}	Gate-to-Source Voltage	6		
	Gate-to-Source Voltage	-4	v	
TJ	Operating Temperature	-40 to 150	°C	
T _{STG}	Storage Temperature	-40 to 150		

Thermal Characteristics

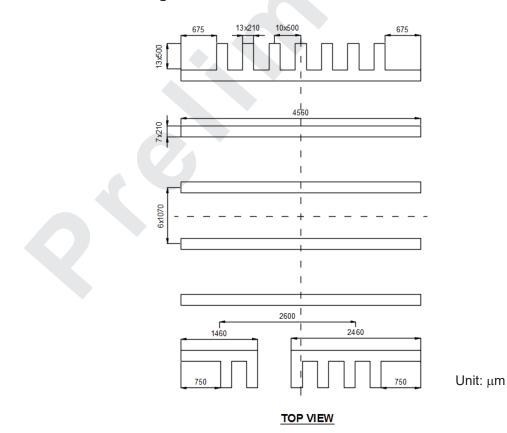
Symbol	Parameter	Тур	Note	Units
R _{ejc}	Thermal Resistance, Junction-to-Case	13.96		
R _{ejb}	Thermal Resistance, Junction-to-Board	1.92		°C/W
R _{eja}	Thermal Resistance, Junction-to-Ambient ⁽¹⁾	57.56		
T _{sold}	Maximum Reflow Soldering Temperature	260	MSL3	°C

Note:

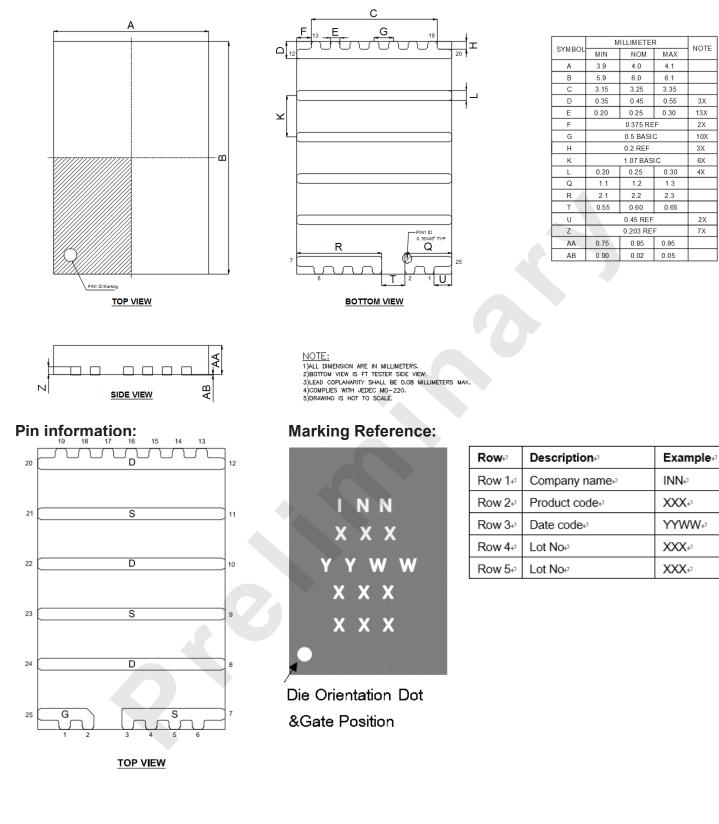
1. R_{BJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.


Electrical Characteristics

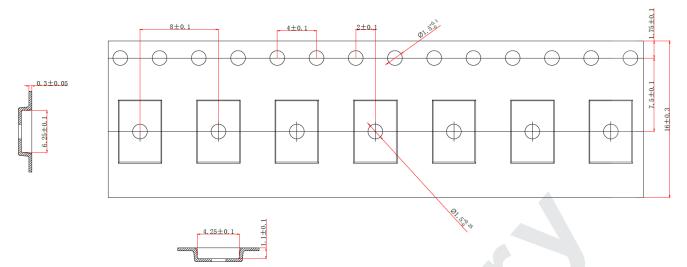
(T₁ = 25°C, unless otherwise noted)


Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC PARAMETERS						
BV _{DSS}	Drain-to-Source Voltage	V _{GS} = 0 V, I _D = 900 μA	100	-	-	V
I _{DSS}	Drain Source Leakage	$V_{GS} = 0 V, V_{DS} = 80 V$	-	9.5	93	
1	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$	-	2.8	55	μA
GSS	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$	-	0.3	1.2	
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 21 \text{ mA}$	0.8	1.1	2.5	V
R _{DS(on)}	Drain-Source On-state Resistance	VGS = 5 V, I _D = 40 A	-	1.4	1.8	mΩ
V_{SD}	Source-Drain Forward Voltage	$I_{\rm S}$ = 0.5 A, $V_{\rm GS}$ = 0 V	-	1.5	-	V
DYNAMIC						
C _{ISS}	Input Capacitance	$V_{GS} = 0 V, V_{DS} = 50 V$	-	2500	-	
C _{OSS}	Output Capacitance	$V_{GS} = 0 V, V_{DS} = 50 V$	-	1100	-	
C _{RSS}	Reverse Transfer Capacitance	$V_{GS} = 0 V, V_{DS} = 50 V$	-	19	-	pF
C _{OSS(ER)}	Energy Related COSS	V_{GS} = 0 V, V_{DS} = 0 V to 50 V	-	1700	-	-
C _{OSS(TR)}	Time Related COSS	V_{GS} = 0 V, V_{DS} = 0 V to 50 V	-	2500	-	
R _G	Gate resistance	f = 5 MHz, open drain	-	1.8	-	Ω
Q _G	Total Gate Charge	V _{GS} = 5 V, v = 50 V, I _D = 40 A	-	22	-	
Q _{GS}	Gate to Source Charge	$V_{GS} = 50 \text{ V}, \text{ I}_{D} = 40 \text{ A}$	-	4.5	-	
Q_{GD}	Gate to Drain Charge	V _{GS} = 50 V, I _D = 40 A	-	4.5	-	nC
Q _{G(TH)}	Gate Charge at Threshold	V _{DS} = 50 V, I _D = 40 A	-	2.5	-	
Q _{OSS}	Output Charge	V _{GS} = 0 V, V _{DS} = 50 V	-	125	-	1

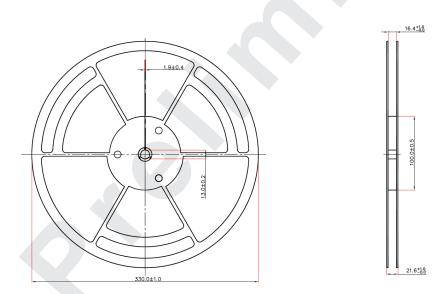
Recommended Land Pattern



Recommended Stencil Drawing



Package Dimensions, FCQFN 4X6

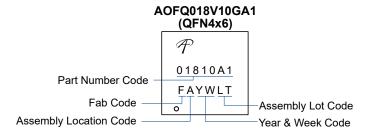


Tape and Reel Dimensions, FCQFN 4X6

NOTES:

- 1. CARRIER TAPE COLOR: BLACK.
- 2. COVER TAPE WIDTH: 13.3±0.10.
- 3. COVER TAPE COLOR: TRANSPARENT.
- 4. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.20 MAX.
- 5. CAMBER NOT TO EXCEED 1MM IN 100MM.
- 6. MOLD# QFN/DFN/MIS6X4X0.75/0.85.
- 7. ALL DIMS IN MM.
- 8. BAN TO USE THE ENVIRONMENT-RELATED SUBSANCES OF JCET PRESCRIBING

NOTES:


- 1. 2500 UNITS PER TRAY.
- 2. COLOR: WHITE.
- 3. ALL DIM IN mm.
- 4. GENERAL TOLERANCE±0.25.
- 5. BAN TO USE THE ENVIRONMENT-RELATED SUBSANCES OF JCET PRESCRIBING.

0

6. THE DERECTION OF VIEW:

Part Marking

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. Alpha and Omega Semiconductor does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support. which, (a) are intended for surgical implant into the body or device, or system whose failure to perform can be reasonably (b) support or sustain life, and (c) whose failure to perform expected to cause the failure of the life support device or when properly used in accordance with instructions for use system, or to affect its safety or effectiveness. provided in the labeling, can be reasonably expected to result in a significant injury of the user.