

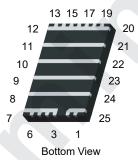
AOFQ039V15GA1

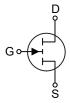
150V GaN Enhancement-mode **Power Transistor**

Features

- GaN-on Silicon E-mode HEMT technology
- Very low gate charge
- Ultra low On-resistance
- Very small footprint

Applications


- High frequency DC/DC converter
- Solar systems optimizers and microinverters
- PD charger and PSU synchronous rectification
- Telecom power supply
- Motor driver


Pin Configuration

Product Summary at T_J = 25°C

V _{DS, max}	150V
$R_{DS(on), max} @ V_{GS} = 5V$	$3.9 \text{m}\Omega$
$Q_{g, typ}$ @ $V_{DS} = 75V$	20nC
I _{DS, Pulse}	260A
Q_{oss} @ $V_{DS} = 75V$	130nC

Top View

Pin Information

Pin	Pin Description	Pin Function
1, 2, 25	Gate	Driver Gate
3-7, 9, 11, 21, 23	Source	Source
8, 10, 12-20, 22, 24	Drain	Power Drain

Ordering Information

Ordering Part Number	Package Type	Package Type Form	
AOFQ039V15GA1	FCQFN4x6	Tape and Reel	1500

Contact local sales office for full product datasheet.

Absolute Maximum Ratings

(T₁ = 25°C, unless otherwise noted)

Symbol	Parameter	AOFQ039V15GA1	Units
V _{DS}	Drain-Source Voltage (Continuous)	150	.,
V _{DS(tr)}	Drain-Source Voltage (up to 300,000 5ms pulse at 150°C)	180	V
	Continuous Drain Current	100	Λ
'D	Pulsed (25°C, T _{Pulse} = 100μs)	260	Α Α
V_{GS}	Gate-Source Voltage	-4 to 6	V
T _{j, stg}	Operating and Storage Temperature	-40 to 150	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Note	Units
$R_{\theta JA}$	Thermal Resistance Junction-to-Ambient (1)	57.56			°C/W
$R_{\theta JB}$	Thermal Resistance Junction-to-Board	1.92			°C/W
$R_{ heta JC}$	Thermal Resistance Junction-to-Case	13.96			°C/W
T _{sold}	Maximum Reflow Soldering Temperature	260		MSL3	°C

Electrical Characteristics

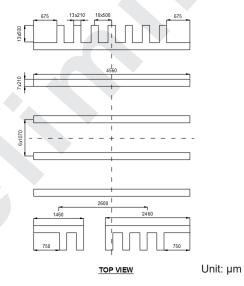
(T_J = 25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC PA	RAMETERS					
BV_{DSS}	Drain-Source Voltage	$V_{GS} = 0 \text{ V, } I_{D} = 500 \mu\text{A}$	150			V
I _{DSS}	Drain-Source Leakage	V _{DS} = 150V, V _{GS} = 0V		2	150	μΑ
	Gate-Source Forward Leakage	V _{GS} = 5V		2	100	μΑ
I _{GSS}	Gate-Source Forward Leakage	V _{GS} = 6V		6	1000	μΑ
	Gate-Source Reverse Leakage	V _{GS} = -4V		0.1	100	μΑ
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 12mA$	0.8	1.1	2.1	V
R _{DS(on)}	Drain-Source On-State-Resistance	V _{GS} = 5V, I _D = 30A		3.2	3.9	mΩ
V _{SD}	Source-Drain Forward Voltage	I _S = 0.5A,V _{GS} = 0V		1.5		V
DYNAMIC						
C _{ISS}	Input Capacitance	V _{GS} = 0V, V _{DS} = 75V		2200		
C _{OSS}	Output Capacitance	V _{GS} = 0V, V _{DS} = 75V		900		
C _{RSS}	Reverse Transfer Capacitance	V _{GS} = 0V, V _{DS} = 75V		10.5		pF
C _{OSS(ER)}	Energy Related C _{OSS}	V _{GS} = 0V, V _{DS} = 0V to 75V		1300		
C _{OSS(TR)}	Time Related C _{OSS}	V _{GS} = 0V, V _{DS} = 0V to 75V		1700		
R _G	Gate Resistance	f = 5MHz, open drain		2		Ω
Q _G	Total Gate Charge	V _{GS} = 5V, V _{DS} = 75V, I _D = 30A		20		
Q _{GS}	Gate-Source Charge	V _{DS} = 75V, I _D = 30A		5		
Q _{GD}	Gate-Drain Charge	V _{DS} = 75V, I _D = 30A		3.5		nC
Q _{G(TH)}	Gate Charge at Threshold	V _{DS} = 75V, I _D = 30A		3		
Q _{OSS}	Output Charge	V _{GS} = 0V, V _{DS} = 75V		130		

Note:

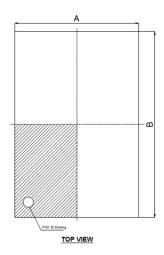

Rev. 1.0 July 2025 **www.aosmd.com** Page 2 of 6

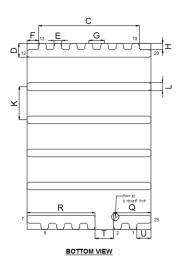
^{1.} $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2oz copper on FR4 board.


Land Pattern, FCQFN4x6

Recommended Land Pattern

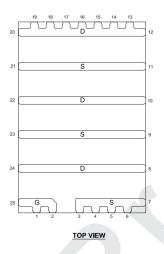
Unit: µm


Recommended Stencil Drawing



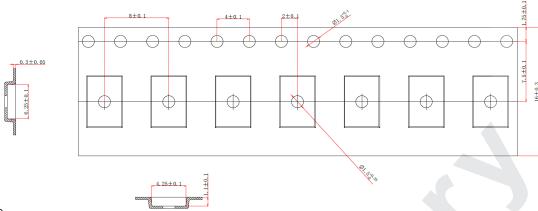
Rev. 1.0 July 2025 **www.aosmd.com** Page 3 of 6

Package Dimensions, FCQFN4x6

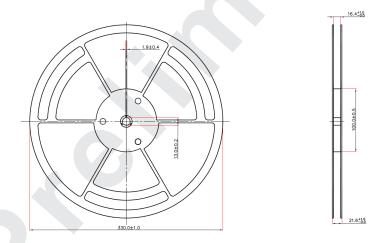

	M	ILLIMETER	2	
SYMBOL		MIN NOM MAX		NOTE
Α	3.9	4.0	4.1	
В	5.9	6.0	6.1	
С	3.15	3.25	3.35	
D	0.35	0.45	0.55	3X
Е	0.20	0.25	0.30	13X
F		0.375 RE	F	2X
G		0.5 BASI	С	10X
Н		0.2 REF		3X
К		1.07 BAS	IC	6X
L	0.20	0.25	0.30	4X
Q	1.1	1.2	1.3	
R	2.1	2.2	2.3	
T	0.55	0.60	0.65	
U	0.45 REF			2X
Z	0.203 REF			7X
AA	0.75	0.85	0.95	
AB	0.00	0.02	0.05	

NOTE:

1)ALL DIMENSION ARE IN MILLIMETERS.
2)BOTTOM VIEW IS FT TESTER SIDE WEW.
3)LEAD COPLAVARITY SHALL BE 0.08 MILLIMETERS MAY
4)COMPLIES WITH JEDEC MO-220.
5)DRAWING IS NOT TO SCALE.


PIN Configuration

Rev. 1.0 July 2025 www.aosmd.com Page 4 of 6



Tape and Reel Dimensions, FCQFN4x6

NOTES:

- 1. CARRIER TAPE COLOR: BLACK.
- 2. COVER TAPE WIDTH: 13.3±0.10.
- 3. COVER TAPE COLOR: TRANSPARENT.
- 4. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.20 MAX.
- 5. CAMBER NOT TO EXCEED 1MM IN 100MM.
- 6. MOLD# QFN/DFN/MIS6X4X0.75/0.85.
- 7. ALL DIMS IN MM.
- 8. BAN TO USE THE ENVIRONMENT-RELATED SUBSTANCES OF JCET PRESCRIBING.

NOTES:

- 1. 2500 UNITS PER TRAY.
- 2. COLOR: WHITE.
- 3. ALL DIM IN mm.
- 4. GENERAL TOLERANCE±0.25.
- 5. BAN TO USE THE ENVIRONMENT-RELATED SUBSTANCES OF JCET PRESCRIBING.
- 6. THE DIRECTION OF VIEW:

Rev. 1.0 July 2025 **www.aosmd.com** Page 5 of 6

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. Alpha and Omega Semiconductor does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

which, (a) are intended for surgical implant into the body or device, or system whose failure to perform can be reasonably (b) support or sustain life, and (c) whose failure to perform expected to cause the failure of the life support device or when properly used in accordance with instructions for use system, or to affect its safety or effectiveness. provided in the labeling, can be reasonably expected to result in a significant injury of the user.

1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support,