

AONS190V70GA1

700V GaN Enhancement-mode

Power Transistor

Features

- 700V GaN enhancement-mode transistor
- Normally-off design
- No Qrr (reverse recovery charge)
- Low Qg (gate charge), low Qoss (output charge)
- Integrated ESD protection

Applications

• PFC and PWM stages (LLC, FSFB, TTF) of Server, Telecom, Industrial, UPS, and Solar Inverters

Product Summary at T_J = 25°C

V _{DS, max}	700V
R _{DS(on), max} @ V _{GS} = 6V	190 mΩ
$Q_{g, typ} @ V_{DS} = 400 V$	2.8nC
I _{D, pulse}	20.5A
$Q_{oss} @ V_{DS} = 400 V$	24.5nC
Q _{rr} @ V _{DS} = 400 V	0nC

Pin Information

Gate	Drain	Kelvin Source	Source
4	5, 6, 7, 8	3	1, 2, 9

Ordering Information

Ordering Part Number	Package Type	Form	Shipping Quantity
AONS190V70GA1	DFN5x6	Tape and Reel	1500

Contact local sales office for full product datasheet.

Absolute Maximum Ratings

 $(T_J = 25^{\circ}C, unless otherwise noted)$

Symbol		Parameter			
V _{DS, max}	Drain Source Voltage	V _{GS} =0V, T _J =-55°C to 150°C	700		
V _{DS, trans}	Drain Source Voltage Transient ⁽¹⁾	V _{GS} =0V	800	V	
V _{DS, pulse}	Drain Source Voltage Pulsed ⁽²⁾	T _C =25°C, total time < 10 hours	750		
^v DS, pulse		T _C =125°C, total time < 1 hour	150		
I _D	Continuous Drain Current	T _C =25°C	11.5		
		T _C =25°C, V _{GS} =6V, t _{pulse} =10µs	20.5	A	
D, pulse	Pulsed Drain Current ⁽³⁾	T_{C} = 125°C, V_{GS} = 6V, t_{pulse} = 10 µs	11.5		

Absolute Maximum Ratings (T_J = 25°C, unless otherwise noted)

V _{GS}	Gate Source Voltage, Continuous	T_{J} = -55°C to 150°C	-6 to 7	V
$V_{GS, pulse}$	Gate Source Voltage, Pulsed	T _J =-55°C to 150°C, t _{pulse} =50ns, f = 100kHz, open drain	-20 to 10	V
P _{tot}	Power Dissipation ⁽⁴⁾	T _C =25°C	82	W
T _{j, stg}	Junction and Storage Temperature Range		-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Тур	Мах	Note	Units
R _{eja}	Thermal Resistance Junction-to-Ambient (5)	70			°C/W
R _{eJC}	Thermal Resistance Junction-to-Case	1.52	1.86		°C/W
T _{sold}	Maximum Reflow Soldering Temperature	260		MSL3	°C

Electrical Characteristics

sold	maximum reenew condening remperature		200				Ŭ
	Characteristics						
Symbol	nless otherwise noted) Parameter	Condition	5	Min	Тур	Max	Units
					.,,,,	max	Unito
.,		V _{DS} =V _{GS} ,	T _{.1} =25°C	1.2	1.7	2.5	
V _{GS(th)}	Gate Threshold Voltage	$I_{\rm D} = 12.2 {\rm mA}$	T ₁ =150°C		1.7		V
		Т	T_=25°C		0.45	20	
IDSS	Drain-Source Leakage Current	V_{DS} =700 V, V_{GS} =0 V	T _{.1} =150°C		6		μA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =6V, V _{DS} =0V, T _j =	25°C		60		μA
	Durin Course On State Desistance		T _J =25°C		138	90	
R _{DS(on)}	Drain-Source On-State-Resistance	$V_{GS} = 6 V, I_D = 3.9 A$ $T_J = 150^{\circ} C$			300		mΩ
DYNAMIC							
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =400V, f=100kHz			96		pF
C _{oss}	Output Capacitance				30		
C _{rss}	Reverse Transfer Capacitance				0.5		
C _{o(er)}	Effective Output Capacitance Energy Related ⁽⁶⁾				43		pF
C _{o(tr)}	Effective Output Capacitance Time Related (7)	V _{GS} =0V, V _{DS} =0 to 40	0 V		60		рг
R _G	Gate Resistance	f=5MHz, open drain			5.8		Ω
SWITCHIN	G						
Q _g	Gate Charge				2.8		
Q _{gs}	Gate Source Charge	$V_{GS} = 0$ to 6 V, $V_{DS} = 40$ $I_{D} = 3.9A$	00 V,		0.25		nC
Q _{ad}	Gate Drain Charge	- ID - 3.9A			1.1		1
V _{plat}	Gate Plateau Voltage	V _{DS} = 400 V, I _D = 3.9A			2.2		V
Q _{oss}	Output Charge	$V_{GS} = 0 V, V_{DS} = 0 \text{ to } 400 V$			24.5		nC
t _{d(on)}	Turn-On Delay Time				1.4		
t _{d(off)}	Turn-Off Delay Time				1.7		
t _r	Rise Time	$V_{GS} = 6 V; Ron = 10 \Omega$			4		ns
t _f	Fall Time				4		1

Electrical Characteristics (Continued)

(T₁ = 25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
REVERSE	CONDUCTION					
V _{SD}	Source-Drain Reverse Voltage	$V_{GS} = 0 V, I_{S} = 3.9A,$ $T_{J} = 25^{\circ}C$		2.6		V
I _{S, pulse}	Reverse Pulsed Current	V _{GS} =6V, t _{pulse} =10µs			20.5	A
Q _{rr}	Reverse Recovery Charge	V _R = 400 V, I _S = 3.9A, dv/dt = 1kA/ μs		0		nC
t _{rr}	Reverse Recovery Time			0		ns
I _{rrm}	Peak Reverse Recovery Current			0		Α

Notes:

- 1. $V_{DS,transient}$ is intended for non-repetitive events, tpulse < 200 µs.
- 2. $V_{DS,pulse}$ is intended for repetitive pulse, t_{PULSE} < 100ns.
- 3. Limit was extracted from characterization test, not measured during production.
- 4. Power dissipation, and consequently max. current ratings are obtained using max. thermal resistance and max. temperature of 150 °C.
- 5. $\mathrm{R}_{\mathrm{thJA}}$ is determined with the device mounted on one square inch of cop-
- per pad, single layer 2oz copper on FR4 board. 6. $C_{O(er)}$ is the fixed capacitance that gives the same stored energy as C_{OSS} while VDS is rising from 0 to 400 V.
- 7. $C_{O(tr)}$ is the fixed capacitance that gives the same charging time as C_{OSS} while VDS is rising from 0 to 400 V.

Recommended PCB Footprint

SYMBOL	DIMENSION	SYMBOL	DIMENSION			
а	4.340	h	0.490			
Ь	0.530	i	1.875			
с	1.270	j	1.270			
d	0.740	k	4.360			
е	1.190	l	2.150			
f	2.040	m	0.550			
g	0.525	n	1.000			
Notes: (1)All dimension are in millimeters. (2)Drawing is not to scale						

Package Dimensions, DFN5x6

Notes:

- 1. Dimension and tolerance conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. Lead coplanarity will be 0.1 millimeters max.
- 4. Complies with JEDEC MO-229.
- 5. Drawing is not to scale.
- 6. Dimensions do not include mold protrusion.
- 7. Package outline exclusive of metal burr dimensions.

Tape and Reel Dimensions, DFN5x6

SYMBOL	DIMENSION(mm)				
STIVIBUL	MIN	NOM	MAX		
A ₀	5.20	5.30	5.40		
B ₀	6.20	6.30	6.40		
Ko	1.10	1.20	1.30		
F	5.45	5.50	5.55		
P1	7.90	8.00	8.10		
W	11.70	12.00	12.30		
А	328	330	332		
N	98	100	102		
С	12.90	13.10	13.30		
D	5.10	5.60	6.10		
w1	12.40	12.40	14.40		
w2	16.60	16.60	18.60		
Т	1.95	2.10	2.25		
К	1.30	1.40	1.55		

Part Marking

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. Alpha and Omega Semiconductor does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.