

AONV190V70GA1

700 V GaN Enhancement-mode Power Transistor

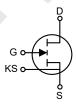
Features

- 700V GaN enhancement-mode transistor
- Normally-off design
- No Qrr (reverse recovery charge)
- Low Qg (gate charge), low Qoss (output charge)
- Integrated ESD protection

Applications

 PFC and PWM stages (LLC, FSFB, TTF) of Server, Telecom, Industrial, UPS, and Solar Inverters

Product Summary at $T_J = 25^{\circ}C$


$V_{DS, max}$	700 V
$R_{DS(on), max} @ V_{GS} = 6V$	$190\text{m}\Omega$
$Q_{g, typ} @ V_{DS} = 400 V$	2.8nC
I _{D, pulse}	20.5A
$Q_{oss} @ V_{DS} = 400 V$	24.5nC
$Q_{rr} @ V_{DS} = 400 V$	0nC

Pin Configuration

Pin Information

Gate	Drain	Kelvin Source	Source
4	5, 6, 7, 8	3	1, 2, 9

Ordering Information

Ordering Part Number	Number Package Type Form		Shipping Quantity	
AONV190V70GA1	DFN8x8	Tape and Reel	1500	

Contact local sales office for full product datasheet.

Absolute Maximum Ratings

(T_J = 25°C, unless otherwise noted)

Symbol		AONV190V70GA1	Units	
V _{DS, max}	Drain Source Voltage	V _{GS} =0V, T _J =-55°C to 150°C	700	
V _{DS, trans}	Drain Source Voltage Transient (1)	V _{GS} =0V	800	V
\/	Drain Source Voltage Pulsed (2)	T _C =25°C, total time < 10 hours	750	
V _{DS, pulse}		T _C =125°C, total time < 1 hour	730	
I _D	Continuous Drain Current	T _C =25°C	11.5	
1	Pulsed Drain Current (3)	T _C =25°C, V _{GS} =6V, t _{pulse} =10 μs	20.5	Α
D, pulse		T _C =125°C, V _{GS} =6V, t _{pulse} =10μs	11.5	

Absolute Maximum Ratings

 $(T_J = 25^{\circ}C, \text{ unless otherwise noted})$

Symbol	I	AONV190V70GA1	Units	
V _{GS}	Gate Source Voltage, Continuous	T _J =-55°C to 150°C	-6 to 7	V
V _{GS, pulse}	Gate Source Voltage, Pulsed	T _J =-55°C to 150°C, t _{pulse} =50ns, f = 100kHz, open drain	-20 to 10	V
P _{tot}	Power Dissipation (4)	T _C =25°C	82	W
T _{j, stg}	Junction and Storage Temperature Range		-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Note	Units
$R_{\theta JA}$	Thermal Resistance Junction-to-Ambient (5)	66			°C/W
$R_{\theta JC}$	Thermal Resistance Junction-to-Case	1.49	1.86 ???		°C/W
T _{sold}	Maximum Reflow Soldering Temperature	260		MSL3	°C

Electrical Characteristics

 $(T_J = 25$ °C, unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC PA	RAMETERS						
V	Gate Threshold Voltage	V _{DS} =V _{GS} ,	T _J =25°C	1.2	1.7	2.5	V
V _{GS(th)}	Gate Threshold Voltage	I _D =12.2 mA	T _J =150°C		1.7		V
1	Drain-Source Leakage Current	\\\ -700\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	T _J =25°C		0.45	20	μA
DSS	Brain-Gource Leakage Gurrent	V _{DS} =700 V, V _{GS} =0 V	T _J =150°C		6		μΛ
I _{GSS}	Gate-Source Leakage Current	V_{GS} =6 V, V_{DS} =0 V, T_j =	25°C		60		μA
R	Drain-Source On-State-Resistance	V _{GS} =6 V, I _D =3.9A	T _J =25°C		138	190	mΩ
R _{DS(on)}	Brain course on state resistance	V _{GS} -0 V, I _D -3.9A	T _J =150°C		300		11122
DYNAMIC					ı	1	
C _{iss}	Input Capacitance	_			96		
C_{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =400V, f=100kHz			30		pF
C _{rss}	Reverse Transfer Capacitance				0.5		
C _{o(er)}	Effective Output Capacitance Energy Related (6)	\ -0\\\\ -0 to 40	0)/		43		pF
C _{o(tr)}	Effective Output Capacitance Time Related (7)	$V_{GS}=0 \text{ V}, V_{DS}=0 \text{ to } 40$	UV		60		
R_{G}	Gate Resistance	f=5MHz, open drain			5.8		Ω
SWITCHIN	G						
Q_g	Gate Charge				2.8		
Q _{gs}	Gate Source Charge	$V_{GS} = 0$ to 6 V, $V_{DS} = 40$ $I_{D} = 3.9$ A	00 V,		0.25		nC
Q _{gd}	Gate Drain Charge	- ID - 3.3A			1.1		
V _{plat}	Gate Plateau Voltage	V _{DS} = 400 V, I _D = 3.9 A			2.2		V
Q _{oss}	Output Charge	V _{GS} =0 V, V _{DS} =0 to 400 V			24.5		nC
t _{d(on)}	Turn-On Delay Time				1.4		
t _{d(off)}	Turn-Off Delay Time	V _{DS} = 400 V; ID = 8 A; L = 318 μH;		1.7		ns	
t _r	Rise Time	V_{GS} = 6 V; Ron = 10 Ω; Roff = 2 Ω;			4		
t _f	Fall Time				4		

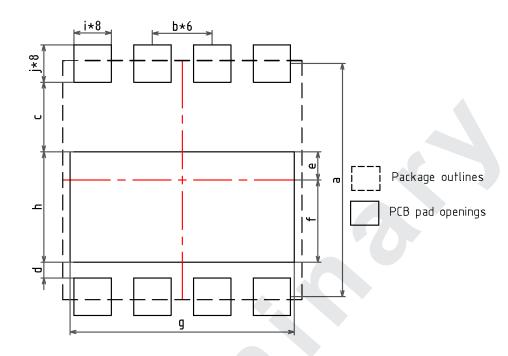
Rev. 1.0 July 2025 **www.aosmd.com** Page 2 of 7

Electrical Characteristics (Continued)

(T_{_1} = 25°C, unless otherwise noted)

Symbol	Parameter	Conditions	;	Min	Тур	Max	Units	
REVERSE (REVERSE CONDUCTION							
V _{SD}	Source-Drain Reverse Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 3.9 \text{A},$ $T_{J} = 25^{\circ}\text{C}$			2.6		V	
I _{S, pulse}	Reverse Pulsed Current	V_{GS} =6V, t_{pulse} =10 μ s				20.5	Α	
Q _{rr}	Reverse Recovery Charge	Final			0		nC	
t _{rr}	Reverse Recovery Time	$V_R = 400 \text{ V}, I_S = 3.9 \text{ A},$ $dv/dt = 1 \text{ kA/ } \mu\text{s}$			0		ns	
I _{rrm}	Peak Reverse Recovery Current	ανναι – τιν ν μο			0		Α	

Notes:


- 1. $V_{DS,transient}$ is intended for non-repetitive events, tpulse < 200 μs .
- 2. $V_{\text{DS,pulse}}$ is intended for repetitive pulse, t_{PULSE} < 100ns.
- 3. Limit was extracted from characterization test, not measured during production.
- 4. Power dissipation, and consequently max. current ratings are obtained using max. thermal resistance and max. temperature of 150 °C.
- 5. $\rm{R}_{\rm{thJA}}$ is determined with the device mounted on one square inch of cop-
- per pad, single layer 2oz copper on FR4 board.

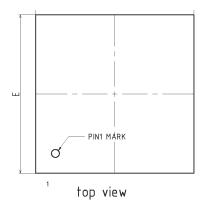
 6. C_{O(er)} is the fixed capacitance that gives the same stored energy as C_{OSS} while VDS is rising from 0 to 400 V.
- 7. $C_{\text{O(tr)}}$ is the fixed capacitance that gives the same charging time as C_{OSS} while VDS is rising from 0 to 400 V.

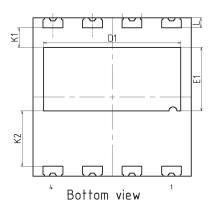
Rev. 1.0 July 2025 Page 3 of 7 www.aosmd.com

Recommended PCB Footprint

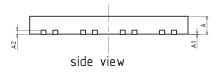
SYMBOL	DIMENSION	SYMBOL	DIMENSION
a	7.800	f	2.750
Ь	2.000	g	7.500
С	2.325	h	3.700
d	0.525	i	1.400
е	0.950	j	1.250

Notes


(1) All dimension are in millimeters.


(2)Drawing is not to scale.

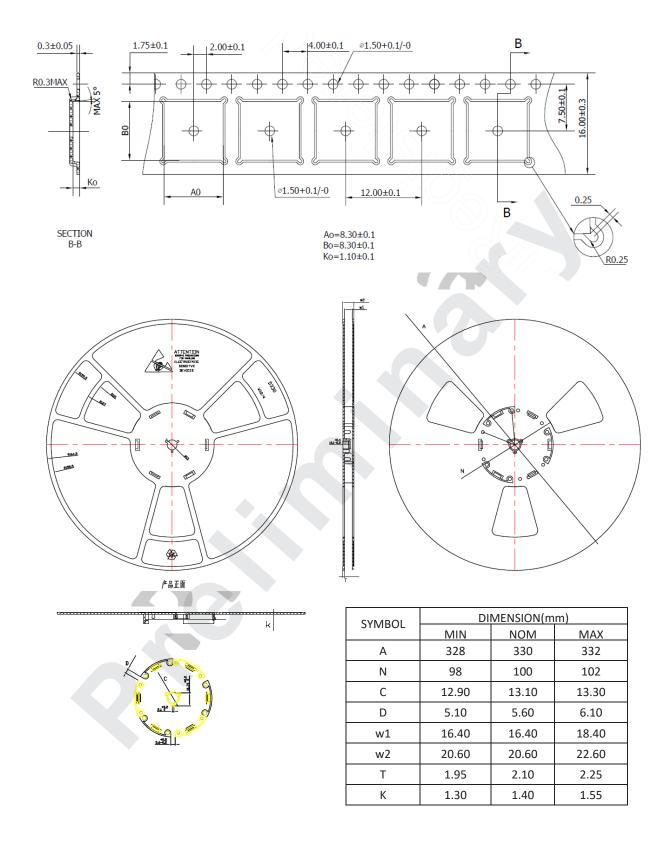
Rev. 1.0 July 2025 www.aosmd.com Page 4 of 7



Package Dimensions, DFN8x8

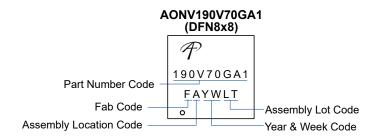
	MIN	NUM	MAX		
А	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
A2		0.203REF			
ь	0.95	0.95 1.00 1.05			
D	8.00 BSC				
D1	6.84 6.94 7.0		7.04		
Е		8.00 BSC			
E1	3.10	3.20	3.30		
K1	0.90	1.00	1.10		
K2	2.70	2.80	2.90		
е		2.00 BSC			
L	0.40	0.50	0.60		

LOGO - AOS Logo
070V65GA1 - Part number code
F - Fab code
A - Assembly location code
Y - Year code
W - Week code
L&T - Assembly lot code


Notes:

- 1. Dimension and tolerance conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. Lead coplanarity will be 0.1 millimeters max.
- 4. Complies with JEDEC MO-229.
- 5. Drawing is not to scale.
- 6. Dimensions do not include mold protrusion.
- 7. Package outline exclusive of metal burr dimensions.

Rev. 1.0 July 2025 **www.aosmd.com** Page 5 of 7



Tape and Reel Dimensions, DFN8x8

Part Marking

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. Alpha and Omega Semiconductor does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

which, (a) are intended for surgical implant into the body or device, or system whose failure to perform can be reasonably (b) support or sustain life, and (c) whose failure to perform expected to cause the failure of the life support device or when properly used in accordance with instructions for use system, or to affect its safety or effectiveness. provided in the labeling, can be reasonably expected to result in a significant injury of the user.

1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support,

Rev. 1.0 July 2025 www.aosmd.com Page 7 of 7