

AOSE018V10GA1

100V GaN Enhancement-mode

100V

1.8mΩ

Power Transistor

Features

- GaN-on-Silicon E-mode HEMT technology
- Very low gate charge
- Ultra-low on resistance
- Very small footprint

Applications

- High frequency DC-DC converter
- Point of Load
- RF envelope tracking
- PC charger
- Mobile power bank
- Motor driver

Pin Configuration

Pin Information

Top View

Pin	Pin Description	Pin Function
1, 2, 25	Gate	Driver Gate
3-7, 9, 11, 21, 23	Source	Source
8, 10, 12-20, 22, 24	Drain	Power Drain

Ordering Information

Ordering Part Number	Package Type	Form	Shipping Quantity	
AOSE018V10GA1	En-FCQFN 4x6	Tape and Reel	1500	

Contact local sales office for full product datasheet.

V _{DS,} max	
$R_{DS(on),}$ max @ V_{GS} = 6V	

Q _{g, typ} @ V _{DS} = 50 V	22nC
I _{D, pulse}	60A
Q _{OSS} @ V _{DS} = 50 V	320 nC
Q _{rr} @ V _{DS} = 50V	125nC

Product Summary at T_J = 25°C

Absolute Maximum Ratings (T_J = 25°C, unless otherwise noted)

Symbol	Parameter	Max	Units
V _{DS}	Drain-to-Source Voltage (Continuous)	100	V
V _{DS(tr)}	Drain-to-Source Voltage (up to 300,000 5ms pulse at 150°C)	120	V
1	Continuous Current ($T_A = 25^{\circ}C$)	100	А
'D	Pulsed ($T_A = 25^{\circ}C$, $T_{Pulse} = 100 \mu s$)	320	А
V	Gate-to-Source Voltage	6	V
*GS	Gate-to-Source Voltage	-4	V
Tj	Operating Temperature	-40 to 150	°C
T _{STG}	Storage Temperature	-40 to 150	°C

Thermal Characteristics

Symbol	Parameter	Тур	Note	Units
R _{θJC}	Thermal Resistance Junction-to-Case	0.24	-	°C/W
R _{θJB}	Thermal Resistance Junction-to-Board	1.31	-	°C/W
R _{eja}	Thermal Resistance, Junction to Ambient ⁽¹⁾	56.63	-	°C/W
T _{sold}	Maximum Reflow Soldering Temperature	260	MSL3	°C

Note:

1. R_{BJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.

Electrical Characteristics

$(T_1 = 25^{\circ}C, unless otherwise noted)$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Static Characteristics						
B _{VDSS}	Drain-to-Source Voltage	V _{GS} = 0V, I _D = 900µA	100	-	-	V
I _{DSS}	Drain Source Leakage	V _{GS} = 0V, V _{DS} = 80V	-	9.5	93	μA
1	Gate-to-Source Forward Leakage	V _{GS} = 5V	-	2.8	55	μA
'GSS	Gate-to-Source Reverse Leakage	$V_{GS} = -4V$	-	0.3	1.2	μA
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 21mA$	0.8	1.1	2.5	V
R _{DS(ON)}	Drain-Source On-state Resistance	V _{GS} = 5V, I _D = 40A	-	1.4	1.8	mΩ
V _{SD}	Source-Drain Forward Voltage	I _S = 0.5A, V _{GS} = 0V	-	1.5	-	V
Dynamic C	haracteristics					
C _{ISS}	Input Capacitance	$V_{GS} = 0V, V_{DS} = 50V$	-	2500	-	
C _{OSS}	Output Capacitance	V _{GS} = 0V, V _{DS} = 50V	-	1100	-	
C _{RSS}	Reverse Transfer Capacitance	V _{GS} = 0V, V _{DS} = 50V	-	19	-	pF
C _{OSS(ER)}	Energy Related COSS	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 50V$	-	1700	-	
C _{OSS(TR)}	Time Related COSS	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 50V$	-	2500	-	
R _G	Gate Resistance	f = 5 MHz, open drain	-	1.8	-	Ω
Q _G	Total Gate Charge	V _{GS} = 5V, V _{DS} = 50V, I _D = 40A	-	22	-	
Q _{GS}	Gate to Source Charge	V _{DS} = 50V, I _D = 40A	-	4.5	-	
Q _{GD}	Gate to Drain Charge	V _{DS} = 50V, I _D = 40A	-	4.5	-	nC
Q _{G(TH)}	Gate Charge at Threshold	V _{DS} = 50V, I _D = 40A	-	2.5	-	1
Q _{OSS}	Output Charge	V _{GS} = 0V, V _{DS} = 50V	-	125	-	1

Recommended PCB Footprint

Recommended Stencil Drawing

SYMBOL	MILLIMETER	NOTE
С	4.56	5X
D1	0.21	3X
E1	0.21	13X
G	0.5	10X
H1	0.5	13X
K	1.07	6X
L1	0.21	4X
R2	2.46	
Q2	1.46	
S	2.6	

Package Dimensions, QFN4x6-25L

TOP VIEW

SIDE VIEW

> NOTE: 1)ALL DIMENSION ARE IN MILLIMETERS. 2)BOTTOM VIEW IS FT TESTER SIDE VIEW. 3)LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX. 4)COMPLIES WITH JEDEC MO-220. 5)DRAWING IS NOT TO SCALE. 6)BOTTOM LEAD SURFACE FINISH IS SN.

CVMPOL	MILLIMETER			NOTE
STIVIBUL	MIN	NOM	MAX	NOTE
Α	3.9	4.0	4.1	
В	5.9	6.0	6.1	
D	0.20	0.25	0.30	3X
E	0.20	0.25	0.30	13X
F		2X		
G	0.5 BASIC			10X
Н	0.2 REF			3X
К		1.07 BASIC		
L	0.20	0.25	0.30	4X
Q	1.1	1.2	1.3	
R	2.1	2.2	2.3	
U	0.45 REF			2X
Z	0.203 REF			
AA	0.75	0.85	0.95	
AB	0.00	0.02	0.05	

Rev. 1.0 July 2025

www.aosmd.com

Tape and Reel Dimensions, QFN4x6-25L

Part Marking

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. Alpha and Omega Semiconductor does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, which, (a) are intended for surgical implant into the body or device, or system whose failure to perform can be reasonably (b) support or sustain life, and (c) whose failure to perform expected to cause the failure of the life support device or when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

system, or to affect its safety or effectiveness.