

Alpha & Omega Semiconductor Product Reliability Qualification Report

AOBS30B65LN rev C

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

www.aosmd.com

The report summarizes the AOS product reliability qualification results. Accelerated environmental tests are performed on a specific sample size and samples are electrically tested before and after each time point. Review of final electrical test results confirms that the product passes the AOS quality and reliability requirements based on **AEC-Q101** and may reference existing qualification results of similar products, which is justified by the structural similarity of the products. The released product will be categorized by its process family and routinely monitored for continuous improvement of product quality.

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	Temp = 175°C Vgs=100% of Vgsmax	1000 hrs	231 pcs	0	JESD22-A108
HTRB	Temp = 175°C Vds=100% of Vdsmax	1000 hrs	231 pcs	0	JESD22-A108
Precondition	168hr, 85°C, 85%RH, 3 cycle reflow @ 245°C (MSL 1)	-	231*5 pcs	0	JESD22-A113 J-STD-020
HAST	130°C, 85%RH, 33.3 psia, Vds = 80% of Vdsmax up to 42V	96 hrs	231 pcs	0	JESD22-A110
H3TRB	85°C, 85%RH, Vds = 80% of Vdsmax up to 100V	1000 hrs	231 pcs	0	JESD22-A101
Autoclave	121°C, 100%RH, 29.7psia	96 hrs	231 pcs	0	JESD22-A102
Temperature Cycle	-65°C to 150°C, air to air	1000 cycles	231 pcs	0	JESD22-A104
IOL	∆Tj = 100°C t _{on} = 2 minutes t _{off} = 2 minutes	8572 cycles	231 pcs	0	MIL-STD-750 Method 1037
TCDT TC Delamination Test	100% CSAM inspection or WBP	-	15 pcs	0	JESD22-A-104
PD Physical Dimension	-	-	30 pcs	0	JESD22-B-100
DS Die Shear	-	-	15 pcs	0	MIL-STD-750-2 Method 2017
SD Solderability	-	-	30 pcs	0	J-STD-002
DI Dielectric Integrity	-	-	5 pcs	0	AEC-Q101-004
PV Parametric Verification	Tj= -55℃,25℃,175℃	-	75 pcs	0	datasheet
ESD HBM Characterization	-	-	30 pcs	0	AEC Q101
ESD CDM Characterization	-	-	30 pcs	0	AEC Q101
DPA Destructive Physical Analysis	-	-	12 pcs	0	AEC Q101

I. Reliability Stress Test Summary and Results

WBS Wire Bond Shear Strength	-	-	10 pcs	0	AEC Q101
WBP Wire Bond Pull Strength	-	-	10 pcs	0	AEC Q101

II. Reliability Evaluation

FIT rate (per billion): 2.61 MTTF = 43670 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

At 60% Confidence Level **Failure Rate** = $Chi^2 \times 10^9 / [2 (N) (H) (Af)] = 2.61$ **MTTF** = $10^9 / FIT = 43670$ years

 Chi^2 = Chi Squared Distribution, determined by the number of failures and confidence interval N = Total Number of units from burn-in tests H = Duration of burn-in testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and $T_{use} = 55^{\circ}C$) Acceleration Factor [**Af**] = **Exp** [Ea / **k** (1/T_J u - 1/T_J s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	125 deg C	150 deg C	175 deg C
Af	758	256	95	38	9.7	2.9	1

T_J s = Stressed junction temperature in degree (Kelvin), K = C + 273.16

 $T_J u$ =The use junction temperature in degree (Kelvin), K = C + 273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K